آموختن علم و دانش بیشتر

نوع جدیدی از پیوند شیمیایی

تاریخ:پنجشنبه 11 آبان 1391-12:37

نوع جدیدی از پیوند شیمیایی
پژوهشگران نوع جدیدی از پیوند شیمیایی را کشف کردند که با دو مدل کووالانسی و یونی که مدل‌های کلاسیک هستند متفاوت است. این پیوند تنها در میدان‌های مغناطیسی بسیار قوی - ده‌ها هزار برابر قوی‌تر از مقدار تولید شده در آزمایشگاه تشکیل می‌شود

به گزارش ایسنا، رسیدن به این مقدار میدان مغناطیسی توهم و خیال نیست. دانشمندان معتقدند که این مقدار میدان مغناطیسی در فضای میان برخی ستارگان در حال چرخش موسوم به کوتوله‌های سفید وجود دارد. کوتوله‌های سفید دارای دانسیته جرمی بسیار بالایی هستند، این اجسام زمانی که عمر یک ستاره، نظیر خورشید، به پایان می‌رسد تشکیل می‌شوند.

ستاره بعد از پایان عمر خود دچار فروپاشی می‌شود اگر جرم آن به‌حدی نباشد که تبدیل به سیاه‌چاله یا ستاره نوترونی شود، کوتوله سفید تشکیل می‌شود. یک کوتوله سفید در ابعاد زمین، جرمی در حد نصف خورشید ما را دارد. با توجه به جرم بالای آن و سرعت بالای چرخش، میدان مغناطیسی تشکیل شده در کوتوله سفید بسیار قوی بوده و در حد 100 هزار تسلا است. یک دستگاه MRI معمولی میدانی در حد 1.5 تسلا دارد.

این پژوهش توسط محققان دانشگاه اوسلو انجام شده است، نتایج این تحقیق درک بنیادینی درباره برهمکنش‌های الکترونیکی با میدان مغناطیسی ایجاد می‌کند، همچنین از شیمی عجیب موجود در فضای بین ستاره‌ای پرده برمی‌دارد. پیوندهای اتمی در روی زمین توسط نیروی‌های الکترواستاتیکی تعیین می‌شوند در نتیجه میدان مغناطیسی هیچ‌گاه مد نظر قرار نمی‌گیرند. اما در فضای بین ستاره‌ای میدان مغناطیسی قوی وجود دارد که روی پیوندها تاثیر شگرفی دارد.

این گروه تحقیقاتی با استفاده از مدل‌سازی کامپیوتری موسوم به برهمکنش پیکربندی کامل (FCI) سرنوشت مولکول‌های هیدروژن را در میدان‌های مغناطیسی بالا مورد مطالعه قرار دادند.

در حالت پایه، که کمترین سطح انرژی الکترون است، با افزایش میدان مغناطیسی مولکول‌ها دچار افزایش انرژی می‌شوند و پیوندهای قوی‌تر خواهند داشت، این پیوندها موازی میدان خواهند بود. زمانی که یک مولکول برانگیخته می‌شود الکترون به اربیتال ضد پیوندی رفته و مولکول به اعضای سازنده خود تجزیه می‌شود. اما در میدان مغنطیسی قوی اوربیتال مولکولی در جهت عمود بر میدان مغناطیسی جهت‌گیری می‌کند. الکترون برانگیخته شده با میدان مغناطیسی برهمکنش داده و پیوند میان اتم‌ها برقرار باقی می‌ماند. این پیوند نه یونی و نه کوالانسی است بلکه نوع جدیدی از پیوند اتمی محسوب می‌شود که پارامغناطیس است.




داغ کن - کلوب دات کام
لطفا نظر بدهید() 

پلاستیک

تاریخ:پنجشنبه 27 مهر 1391-15:28

تاریخچه

اولین قدم در مورد صنعت پلاستیک ، توسط فردی به نام وایسا هیکات انجام گرفت که تلاش می‌کرد ماده‌ای بجای عاج فیل تهیه کند. چون عاج فیل بعنوان ماده‌ای سخت ، گرانقیمت و همینطور کمیاب کاربردهای فراوانی داشت. وی توانست نیترات سلولز را (که به غلط نیتروسلولز گفته می‌شود) از سلولز تهیه کند. پس نیترات سلولز اولین پلاستیک با منشا طبیعی است.
img/daneshnameh_up/7/7e/group.jpg

ویژگیهای مواد پلاستیکی

یک ویژگی مهم مواد پلاستیکی در صنعت ، فرآیند پذیر بودن یا Processible بودن آن است. اگر ماده‌ای قابل ذوب یا قابل حل باشد، در صنعت قابل استفاده است و گرنه نمی‌توان از آن استفاده صنعتی کرد. چون نمی‌توانیم آن را برای تهیه مواد بکار ببریم.

ویژگی سلولز و نیترات سلولز

سلولز نه قابل حل و نه قابل ذوب است و قبل از ذوب تجزیه می‌شود. پس فرآیند پذیر نیست. اما نیترات سلولز هم قابل حل و هم قابل ذوب است. یعنی وایسا هیکات ، سلولز فرآیند ناپذیر را به نیترات سلولز فرآیند پذیر تبدیل کرد.

ویژگی استات سلولز

نیترات سلولز ایراداتی دارد. از این رو تلاش برای جایگزین کردن یک پلاستیک دیگر به جای آن آغاز شد. در سال 1908 مایلز استات را تهیه کرد که هم مزیت نیتروسلولز را دارد و هم کارکردن با آن آسانتر است و خطرات کمتری دارد.

اولین پلاستیک سنتزی

اولین پلاستیک سنتزی ، رزین فنل- فرمالدئید بود که در تلاش برای ساخت مواد پلیمری کاملا سنتزی ، در سال 1907 لئو بلکند موفق شد از متراکم کردن فنل با فرمالدئید ، رزین فنل فرمالدئید را که بعدها تحت عنوان بالکیت (بعنوان محصول نهایی) نامیده شد، تولید کند. این رزین هم در محیطهای اسیدی و هم قلیایی قابل تهیه است.
محیط اسیدی نوالاک بالکیت
محیط بازی رزول رزیتول رزیت

فنوپلاستها

از متراکم شدن فنل با فرمالدئید در محیط اسیدی یا بازی فنوپلاست یا رزین فنل-فرمالدئید حاصل می‌شود. ماکزیمم PH که در صنعت با آن کار می‌شود 8/5 است و برای ایجاد این PH البته در محیط بازی به محیط ، NH3 یا NaOH اضافه می‌شود. برای این که چسب نجاری حاصل شود، در انتهای مولکول ، باید گروه OH باشد. هر چه گروههای OH بیشتر باشد چسبندگی بیشتر خواهد بود. پس برای تولید چسب بهتر ، باید فرمالدئید اضافی برداریم. بهترین چسب آن است که گروه فرمالدئید آزاد داشته باشد.

img/daneshnameh_up/8/8e/Noutlet.gif

آمینوپلاستها

این پلاستیک‌ها از متراکم شدن اوره یا ملامین با فرمالدئید در محیط اسیدی یا بازی بدست می‌آیند. دمای این واکنش باید بین 60 تا 80 درجه سانتیگراد باشد. چسب فنل فرمالدئید بعلت بدبویی در بازار نیست. ولی این چسب ، در بازار موجود است. ملامین یا 8 ، 4 ، 6 _ تری آمینو _ 1 ، 3 ، 5 _ تری آزید با فرمالدئید می‌تواند در محیط اسیدی یا بازی ، واکنش چند تراکمی انجام دهد و برحسب شرایط تنظیم واکنش ، پلیمر یک بعدی ایجاد کند.

وقتی که شرایط را با تنظیم PH در محیط اسیدی و دمای زیاد تغییر دهیم، پلیمر یک بعدی به سه بعدی تبدیل می‌شود و همراه با 20 درصد کائولن تبدیل به فرمیکال می‌شود که ماده استخوانی روی میزهای کابینت‌هاست که در خلا تحت
فشار بالا پرس می‌شود. حال اگر 40 - 30 درصد کربنات کلسیم اضافه کنیم، تبدیل به زیر سیگاری و مواد دیر اشتعال پذیر می‌شود که قیمت آن ، فوق‌العاده افت می‌کند. اما قدرت مکانیکی آن بالا می‌رود.

کلید و پریز برق بدون استثنا از این
ماده می‌باشد.

ترموپلاستها

پلیمرهایی هستند که در اثر فشار ، تغییر شکل می‌دهند و بعد از حذف نیروی خارجی ، این تغییر شکل همچنان ادامه می‌یابد و باقی می‌ماند. به عبارت دیگر ، خاصیت پلاستیسیتی دارند. این پلیمرها در اثر گرما بتدریج نرم می‌شوند و با افزایش دما به حالت فیزیکی جامد خود تبدیل می‌شوند. این خصلت ، کاربرد این پلیمرها را تضمین می‌کند یا بوجود می‌آورد. اگر ترموپلاستیکی را بصورت پودر یا حلقه‌های کوچک حرارت دهیم، ابتدا نرم و سپس مذاب و وسیکوز می‌شود و اگر آنها را قالب بگیریم، شکل قالب را به خود می‌گیرد.


داغ کن - کلوب دات کام
لطفا نظر بدهید() 

کاتالیزور

تاریخ:دوشنبه 24 مهر 1391-15:27

کاتالیزور ماده ای است که سرعت یک واکنش شیمیایی را افزایش می دهد بدون آنکه خود در جریان واکنش مصرف شود.

ریشه لغوی

کاتالیزور از دو صفت کاتا و لیزور تشکیل شده است. در زبان یونانی "کاتا" به معنای پائین ، افتادن ، یا پائین افتادن است و "لیزور" به معنی قطعه قطعه کردن می‌باشد. در برخی زبانها کاتالیزور را به معنی گردهم آوردن اجسام دور از هم معرفی کرده اند.

تاریخچه

اولین گزارش استفاده از کاتالیزور ، مربوط به کریشف می‌باشد که با استفاده از یک اسید به عنوان کاتالیزور توانست نشاسته را به قند ، هیدرولیزکند. بعدها دیوی توانست واکنش اکسیداسیون هیدروژن را با اکسیژن در حضور کاتالیزورپلاتین انجام دهد که این واکنش یک واکنش گرما گیر است و در نتیجه هنگام انجام واکنش جرقه تولید می‌شد.

اولین کار در توضیح اینکه چرا یک واکنش کاتالیزوری انجام می‌گیرد و کاتالیزور چه نقشی دارد، توسط "فارادی" انجام شد. بیشترین بهره‌برداری از کاتالیزور در
جنگ جهانی بود.

انقلاب تکنولوژی اصلی در زمینه کاتالیزور مربوط به نیمه دوم قرن 20 یعنی بین سالهای1980 ـ 1950 می‌باشد.دهه 1960 ـ 1950 دهه ای است که با تولید کاتالیزورهای زیگر _ ناتا ترکیبات بسیار مهم و استراتژیک ساخته شد.

انواع کاتالیزور

کاتالیزور به دو نوع کاتالیزور مرغوب و نامرغوب تقسیم می‌شود:


  • کاتالیزور مرغوب: کاتالیزور مرغوب به کاتالیزوری گفته می‌شود که فقط اجازه تشکیل یک نوع محصول را بدهد.

  • کاتالیزور نامرغوب: اگر در حضور کاتالیزور محصولات متفاوتی امکان تشکیل داشته باشند کاتالیزور نامرغوب تلقی می‌شود.

چگونگی عمل کاتالیزور

تجربه نشان داده است که واکنش با کاتالیزور در دمای کمتری صورت می‌گیرد و همچنین کاتالیزور ، انرژی اکتیواسیون را پائین می‌آورد یا کاهش می‌دهد یا باعث می‌شود مولکولهای درشت به مولکولهای کوچکتر ، قطعه‌قطعه یا شکسته شوند.

کاتالیزور واکنش را می‌توان بدون تغییر در پایان واکنش بدست آورد. مثلا سرعت تجزیه KClO3 را با مقدار کمی MNO2 می‌توان فوق‌العاده زیاد کرد. در معادله‌ای که برای این تغییر نوشته می‌شود ، کاتالیزور را بالای پیکان می‌گذارند ، زیرا کاربرد آن در ا
ستوکیومتری کل واکنش اثری ندارد:


KClO3--------->2KCl+3O2

مکانیسم واکنش کاتالیزوردار

کاتالیزور نمی‌تواند موجب وقوع واکنش‌هایی شود که از نظر ترمودینامیک امکان وقوع ندارند. بعلاوه صرفا حضور کاتالیزور نیست که (احتمالا بعنوان یک بخش فعال‌کننده) موجب اثر بر سرعت واکنش می‌شود. در یک واکنش کاتالیزوردار ، کاتالیزور در یک مرحله عملا مصرف می‌شود و در مرحله بعدی بار دیگر تولید می‌گردد و این عمل بارها تکرار می‌گردد، بدون آنکه کاتالیزور دچار تغییر دائمی شود.

بنابراین کار کاتالیزور آن است که راه تازه ای برای پیشرفت واکنش می‌گشاید. بدین ترتیب مکانیسم کاتالیزوردار با یک واکنش بی‌کاتالیزور تفاوت دارد. انرژی فعال سازی راهی که واکنش به کمک کاتالیزور طی می‌کند، کمتر از انرژی فعال‌سازی راهی است که همان واکنش بدون کاتالیزور می‌پیماید (شکل 1)
img/daneshnameh_up/9/9f/nemoodar2.jpg

این واقعیتی است که علت سریعتر شدن واکنش را توجیه می‌کند. وقتی کاتالیزور بکار برده می‌شود، مولکولهای نسبتا بیشتری انرژی لازم برای یک برخورد موفق پیدا می‌کنند (شکل 2). بدین ترتیب عده کل برخوردهای موثر در واحد زمان، که موجب انجام واکنش می‌شوند، افزایش می‌یابد.

در شکل 1 به دو نکته دیگر نیز پی می‌بریم. نخست آنکه تغییرات انرژی برای واکنش کاتالیزوردار و واکنش بی‌کاتالیزور یکسان است. دیگر آنکه
انرژی فعال سازی واکنش معکوس نیز به هنگام استفاده از کاتالیزور کاهش می‌یابد و مقدار کاهش آن درست برابر کم شدن انرژی فعال سازی واکنش کاتالیزوردار اصلی است. این بدان معنی است که کاتالیزور بر یک واکنشی و واکنش معکوس آن اثر یکسان دارد. اگر یک کاتالیزور سرعت یک واکنش را دو برابر کند، همان کاتالیزور سرعت واکنش معکوس آن را نیز دو برابر خواهد کرد.

کاتالیزورهای طبیعی (آنزیم)

بسیاری از فرایندهای صنعتی به اعمالی بستگی دارند که با کاتالیزور صورت می‌گیرند. ولی کاتالیزورهایی که برای انسان مورد اهمیت بیشتری دارند، کاتالیزورهای طبیعی یعنی آنزیم‌ها هستند. این مواد فوق العاده پیچیده ، فرایندهای حیاتی مانند گوارش و سنتز سلولی را کاتالیز می‌کنند.

عده زیادی از واکنشهای شیمیایی پیچیده که در بدن صورت می‌گیرد و برای حیات ما ضرورت دارد، به علت اثر آنزیم‌ها در دمای پائین بدن امکان وقوع پیدا می‌کنند. هزاران آنزیم وجود دارند که هر یک وظیفه خاصی را انجام می‌دهند. تحقیق درباره ساختمان و عمل آنزیم‌ها ، نویدهای فراوانی درباره پیشرفت شناخت عامل بیماری و مکانیسم رشد می‌دهد.

img/daneshnameh_up/9/94/nemoodar1.jpg

کاتالیزور همگن و ناهمگن

در کاتالیزور همگنماده ای که بعنوان کاتالیزور کار می‌کند، با مواد واکنش‌دهنده در یک فازند، ولی در یک کاتالیزور ناهمگن یا کاتالیزور سطحی ، مواد واکنش‌دهنده و کاتالیزور در دو فاز مجزا کنار هم هستند و واکنش در سطح کاتالیزور صورت می‌گیرد.

کاتالیزور همگن

نمونه ای از کاتالیزور همگن در فاز گازی ، اثر کلر در تجزیه دی‌نیترون اکسید است. گاز دی‌نیترون اکسید ، در دمای اتاق ، گاز نسبتا بی‌اثری است، اما در دماهای نزدیک به صد درجه طبق معادله زیر تجزیه می شود.


(2N2O(g)--------->2N2(g)+O2(g

مطالعات سینتیک نشان می‌دهد که واکنش مذکور بر اثر برخورد بین دو ملکول کلر کاتالیز می‌شود.

کاتالیزور همگن در محلول نیز ممکن است صورت گیرد. بسیاری از واکنشها بوسیله
اسیدها و بازها کاتالیز می‌شوند. تجزیه هیدروژن پراکسید در حضور پون یدید کاتالیز می‌شود.

کاتالیزور ناهمگن

کاتالیزور ناهمگن عمدتا از طریق جذب سطحی شیمیایی مواد واکنش دهنده بر سطح کاتالیزور صورت می‌گیرد. جذب سطحی فرآیندی است که در جریان آن مولکولها به سطح جسمی جامد می‌چسبند. مثلا در ماسکهای گازی ، زغال به عنوان یک ماده جاذب برای گازهای زیان آور بکار می‌رود.

در جذب سطحی فیزیکی معمولی ، مولکولها ، بوسیله
نیروهای و اندروالسی به سطح ماده جاذب ، گیر می‌کنند. بنابراین مولکولهایی از گاز که جذب سطحی شده‌اند، تا همان حد تحت تاثیر قرار گرفته‌اند که گویی مایع شده باشند.

در جذب سطحی شیمیایی ، مولکولهای جذب شده ، با پیوندهایی که قابل مقایسه با پیوندهای شیمیایی است، به سطح ماده کاتالیزور نگه داشته می‌شوند. در فرایند تشکیل پیوند با ماده جاذب ، مولکولهایی که بطور شیمیایی جذب شده‌اند، دچار تغییر
آرایش الکترونی درونی می‌شوند. پیوندهای درون بعضی از مولکولهای کشیده و ضعیف و حتی پیوند بعضی از آنها شکسته می‌شوند.

مثلا هیدروژن بصورت اتمی بر سطح
پلاتین جذب می‌شود. بنابراین تعدادی از ملکولها که بطور شیمیایی جذب سطحی شده‌اند، به صورت کمپلکس فعال‌ شده یک واکنشی که در سطح کاتالیزور شده، عمل می‌کند.

مکانیسم جذب سطحی شیمیایی:

تاکنون مکانیسم دقیق جذب سطحی شیمیایی و کاتالیز سطح کاملا فهمیده نشده است، فقط فرضهایی قابل قبول برای مکانیسم چند واکنش خاصی مطرح شده است:


  • نظری دال بر اینکه نقصها یا بی‌نظمیهای شبکه در سطح کاتالیزور ، جای فعالی برای عمل کاتالیزور است، اولین فرضیه برای توضیح عمل تقویت کننده‌های کاتالیزورهای مناسب است. تقویت کننده ها موادی هستند که فعالیت کاتالیزور ها را زیاد می‌کنند. مثلا در سنتز آمونیاک

(N2(g)+3H2(g)----------->2NH3(g

اگر کاتالیزورآهن با مقدار کمی پتاسیم یا وانادیم آمیخته شده باشد، بیشتر موثر واقع می‌شود.

سموم کاتالیزور

سموم کاتالیزور موادی هستند که کاتالیزورها را از فعالیت باز می‌دارند. مثلا مقدار کمی آرسنیک توانایی پلاتین را که کاتالیزور تبدیل سولفور دی‌اکسید ،به سولفور تری‌اکسید است، از بین می‌برد.


(2SO2(g)----------->2SO2(g

احتمالا در این عمل بر سطح پلاتین ، پلاتینم ارسیند تشکیل می‌شود و فعالیت کاتالیزوری از میان می‌رود. جذب اتیلن ، کاتالیزور را موقتا مسموم می‌کند، درحالیکه جذب پلاتین ، کاتالیزور را بطور دائم مسموم می‌کند.

اختصاصی بودن فعالیت کاتالیزور

فعالیت کاتالیزورها عمدتا بسیار اختصاصی است. در پاره‌ای موارد ، کاتالیزور معین موجب سنتز نوعی محصولات خاص از بعضی مواد می‌شود، حال آنکه کاتالیزور دیگر موجب سنتز محصولات کاملا متفاوت دیگری از همان مواد می‌شود. البته در این موارد امکان وقوع هر دو واکنش از لحاظ ترمودینامیکی میسر است. مثلاکربن مونوکسید و هیدروژن بر هم اثر می‌کنند و بسته به شرایط واکنش و نوع کاتالیزور مصرف شده ، محصولات بسیار متنوعی ایجاد می‌کنند.

اگر
کبالت یا نیکل بعنوان کاتالیزور بکاربرده شود، مخلوطی از هیدروکربنها بوجود می‌آورد. در این جا نیکل بعنوان یک کاتالیزور نامرغوب عمل می‌کند.


CO(g)+3H2(g)------------>CH4(g)+H2O

و اگر مخلوطی از روی و اکسید کرم بعنوان کاتالیزور مصرف شود، از واکنش متانول تولید می‌شود.


(CO(g)+2H2(g)------------>CH3OH(g

برای این واکنش ، نیکل یک کاتالیزور مرغوب است.کاتالیزور مرغوب کاتالیزوری است که انتخابی عمل کند.

غیر فعال شدن کاتالیزور

معمولا تمام کاتالیزورها دارای یک عمر معین هستند که پس از سپری شدن آن فعالیت موثر آنها کاهش می‌یابد که ممکن است بطور ناگهانی یا تدریجی باشد (افت فعالیت). در چنین مواقعی معمولا بسته به نوع و مکانیسم غیر فعال شدن ، باید کاتالیروز را بازیابی یا جایگزین کرد. در این مواقع باید تصمیم بگیریم که آن را تعویض یا احیا کنیم. تصمیم بر اساس مکانیسم های غیر فعال شدن است و مهمترین و متداولترین مکانیسم غیر فعال شدن عبارت است از:


  1. در کاتالیزورهای نفتی ، تجزیه هیدروکربن‌ها در دمای بالا موجب تشکیل لایه ضخیمی از کربن غیر فعال روی سطوح کاتالیزور می‌گردد که همین دوره باعث می‌شود که روی سایت کاتالیزور پوشیده و از کار می‌افتد.

  2. پدیده دوم مربوط به مسموم شدن کاتالیزور می‌باشد. این پدیده زمانی اتفاق می‌افتد که ماده جذب شونده باعث تعییر آرایش کاتالیزور می‌شود. آرایش بلوری در فعالیت کاتالیزور نقش اساسی دارد. تغییر آرایش بلوری باعث غیر فعال شدن آن می‌شود. عواملی مانند سولفور این پدیده را ایجاد می‌کند.

  3. عامل سوم مربوط به وجود ناخالصیهای فلزی در سطح کاتالیزور می‌باشد. این ناخالصیها در مناطق فعال ، جذب و فعالیت کاتالیزور را کاهش می‌دهند.

  4. اورگانومتالیکهای فلزی معمولا به مقدار بسیار به عنوان کاتالیستها مورد استفاده قرار می‌گیرند. از تجزیه ناخواسته این کاتالیستها در دمای بالا اورگانومتالیکهای تیتانیم و وانادیم ایجاد شده، ضمن بلوکه کردن کانالهای کاتالیکی باعث کاهش فعالیت کاتالیزوری می‌شوند.

  5. معمولا ساختمان کاتالیزورها یک ساختمان متخلخل و پرزدار است. حفره‌ های میکرونی در روی کاتالیزور وجود دارد که شوکهای حرارتی باعث مسدود شدن این میکرو پرزها می‌گردد. بنابراین شوکهای حراراتی ممکن است فعالیت کاتالیزورها را کاهش دهد.

بازیابی کاتالیزور

  • کاتالیزور را می‌توان با عبور هوای گرم احیا کرد.

  • در مکانیسم های دیگر از وجود ناخالصیها که باعث مسموم شدن کاتالیزور می شود جلوگیری کرد.

طبقه بندی سیستم های کاتالیکی

عملکرد کاتالیزورها در دو فار هموژن و هتروژن انجام می‌گردد. فاز هموژن حالتی است که مواد واکنش‌دهنده و کاتالیزور در یک فاز قرار می‌گیرند. حال آنکه اگر عملکرد کاتالیزور و مواد واکنش‌دهنده در دو فاز مختلف باشد و مرز فیزیکی بین کاتالیزور و مواد واکنش‌دهنده وجود داشته باشد، چنین فازی را هتروژن می‌گویند.

کاتالیزورهای جامد

  1. جامد فلزی:

    مناسب واکنشهایی هستند که مواد واکنشی از هیدروژن و یا هیدرو کربن تشکیل شده‌اند. عمده کاتالیزورهای این دسته از عناصر واسطه تشکیل می‌گردد. مثل
    نقره ، پلاتین ، آهن و نیکل و پالادیم.

    معمولا ویژگی این فلزات و کاتالیزورها به گونه ای است که هم هیدروژن و هم هیدروکربن به راحتی در سطح این کاتالیزورها جذب می‌گردند. این کاتالیزورها برای واکنشهای هیدروژن و هیدروژن‌گیری مناسب است و برای واکنشهای اکسیداسیون مناسب نیست، چون احتمال اکسید شدن خود فلزات هم وجود دارد.

  2. کاتالیزورهای اکسید فلزی:

    اکسید روی ، اکسید نیکل ، اکسید منگنز ، اکسید کروم ، اکسید
    بیسموت ، اکسید مولیبدن. ویژگی این کاتالیزورها در این است که می‌توانند در واکنش ، اکسیژن مبادله کنند (یعنی می‌توانند اکسیژن را دوباره به حالت اول برگردانند).

  3. کاتالیزروهای اکسید فلزی _ عایق:

    اکسید منیزیم ، اکسید آلومینیم ، سیلیس. این کاتالیزورها بعنوان جاذبه الرطوبه مورد استفاده قرار می‌گیرند.

  4. کاتالیزورهای زیگلر _ ناتا:

    در
    پلیمریزاسیون استفاده می‌شود. نسل جدیدی از کاتالیزورهای زیگلر _ ناتا در متالوسیون استفاده می‌شود.

عوامل موثر در فعالیت کاتالیزور

  • سطح کاتالیزور

  • قدرت و استحکام پیوند جذبی

راههای افزایش سطح کاتالیزور

  • پودر کردن یعنی افزایش سطح کاتالیزور بطریق فیزیکی

  • ایجاد خلل و فرج و کانالهای بسیار ظریف میکروسکوپی در بدنه کاتالیزور

  • نشاندن کاتالیزور روی بستری از آلومینا و زئولیت

  • متخلخل کردن کاتالیزور

کاربرد کاتالیزور

کاتالیزور در سه بخش به کار می رود:


  1. صنعت اتومبیل:

    در این بخش کاتالیزورها بصورت مستقیم و غیرمستقیم استفاده می‌شوند. در اگزوز اتومبیلها بستری از فلزات جامد مثل پلاتین روی پایه آلومینات قرار گرفته و هیدروکربنهای مضر مثل منوکسید کربن و غیره را جذب می‌کند.

  2. صنعت نفت و پالایش مواد نفتی:

    عمده ترین مصرف کاتالیزورها در صنعت نفت در دو پروسه
    کراکینگ (شکستن مولکولهای درشت به کوچک) و رفرمینگ (دوباره باز آرائی و ترکیب مولکولهایی برای تولید) می‌باشد.

    در صنعت نفت بیشتر کاتالیزورهای زیگلر _ ناتا، کاتالیزورهای فلزی و اورگانومتالیک مثل
    رودیوم استفاده می‌شود.

  3. تولید مواد شیمیایی



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

معرف PH

تاریخ:پنجشنبه 20 مهر 1391-16:28

معرفهای PH یا شناساگرهای شیمیایی اسید و باز ، ترکیبات رنگی یا غیر رنگی آلی با وزن مولکولی بالا هستند که در آب یا حلال‌های دیگر به دو صورت اسیدی و بازی وجود دارند.


تصویر

نگاه اجمالی

بهترین شناساگرهای اسید - باز ، اسیدهای آلی ضعیف می‌باشند. شکل اسیدی شناساگر رنگ مشخصی دارد و در صورت از دست دادن پروتون ، به ترکیب بازی که دارای رنگ دیگری می‌باشد، تبدیل می‌شود. یعنی تغییر رنگ اغلب شناساگرها از محلول بستگی به تغییر شکل آنها دارد. با استفاده از شناساگرها می‌توان PH یک محلول را تعین کرد شناساگرهای مختلفی برای تعیین PH شناخته شده‌اند که هر یک در محدوده خاصی از PH تغییر رنگ می‌دهند.

چگونگی تغییر رنگ یک شناساگر

شناساگرها ، اسیدها یا بازهای ضعیفی هستند و چون اکثر آنها شدیدا رنگی هستند، در هر اندازه گیری PH چند قطره از محلول رقیق شناساگر کافی می‌باشد. شناساگرهای اسید - باز را معمولا به صورت HIn نشان می‌دهند.


فرم اسیدی HIn ↔ H+ + -In فرم بازی


(Ka = (H+)x(In-)/(HIn)



اگر محلولی شامل دو جزء رنگی A و B باشد، معمولا رنگ A در مخلوط وقتی توسط چشم انسان تشخیص داده می‌شود که شدت آن ، ده برابر بیشتر از شدت رنگ B باشد، چون شدت آن تابع غلظت است. بنابراین رنگ ترکیب اسیدی شناساگر زمانی قابل رویت است که :


(10In-) = (HIn)

و رنگ و ترکیب بازی شناساگر زمانی قابل مشاهده است که:


(In-) = 10(HIn)

انتظار می‌رود وقتی که (In-) = (HIn) می‌باشد، رنگ شناساگر حد واسط بین دو رنگ باشد. در آن نقطه ویژه :
Ka شناساگر برابر غلظت +H و PKa = PH است. در نتیجه PH ای که در آن یک شناساگر که PKa آن نزدیک PH نقطه هم‌ارزی
تیتراسیون است، تغییر رنگ شناساگر در نزدیک نقطه تعادل ، امکان‌پذیر می‌باشد.

اهمیت استفاده از شناساگر مناسب در تیتراسیون

با استفاده از انواع شناساگر ، می‌توان PH یک محلول را تعیین کرد. برای این کار لازم است محدوده PH تغییر رنگ شناساگر را بدانیم. در تیتراسیونهای اسید و باز هم لازم است که PKa شناساگر مورد استفاده به PH محلول مورد نظر نزدیک باشد، در غیر اینصورت آزمایش همراه با خطا خواهد بود. اگر شناساگر قبل از نقطه هم‌ارزی تغییر رنگ دهد، حجم نقطه پایان کمتر از نقطه هم‌ارزی (خنثی شدن اسید یا باز) است و اگر شناساگر بعد از نقطه هم ارزی تغییر رنگ دهد، حجم نقطه پایان بیشتر از نقطه هم ارزی است.

در برخی از موارد مخلوطی از دو یا چند شناساگر در یک تیتراسیون مصرف می‌شود تا تغییر رنگ مشخصی در نقطه پایان رخ دهد. بعنوان مثال می‌توان متیلن آبی را با متیلن قرمز مخلوط کرده و یک شناساگر مخلوط بوجود آورد که در PH حدود 5.4 از بنفش به سبز تغییر رنگ می‌دهد. در این مورد ، متیلن آبی حین تیتراسیون بدون تغییر رنگ می‌ماند. اما متیلن قرمز در PHهای ‌کمتر از حدود 5.4 قرمز و در PHهای بیشتر از حدود 5.4 زرد می‌باشد.

در PHهای ‌کمتر ، قرمز و آبی ترکیب شده و رنگ بنفش ایجاد می‌کنند و در PHهای بیشتر ، زرد و آبی ترکیب شده و رنگ سبز ایجاد می‌کنند. دیدن تغییر رنگ بنفش به سبز ، آسانتر از تشخیص تغییر رنگ قرمز به زرد در شناساگر متیلن سرخ تنهاشت.

تصویر


معرفهای معروف PH

نمونه‌ای از معرفهای PH ، پر کاربرد در آزمایشگاهای شیمی
شناساگر رنگ اسیدی دامنه PH برای تغییر رنگ رنگ قلیایی
آبی تیمول قرمز 1.2 - 2.8 زرد
متیل اورانژ قرمز 3.1 - 4.5 زرد
سبز برموکروزول زرد 3.8 - 5.5 آبی
سرخ متیل قرمز 4.2 - 6.3 زرد
لیتموس قرمز 5 - 8 آبی
آبی برم‌تیمول زرد 6 - 7.6 آبی
آبی تیمول زرد 8 9.6 آبی
فنل فتالین بی‌رنگ 8.3 - 10 قرمز
زرد آلیزارین زرد 10 - 12.1 ارغوانی کم رنگ
تیمول فتالئین بی‌رنگ 9.3 - 10.5 آبی
ایندوفنول قرمز 7.1 - 9.1 آبی
برموفنول آبی زرد 3 - 4.6 ارغوانی
مالاشیت سبز زرد
آبی
0 - 2
11.5 - 14
سبز
بی‌رنگ
آزو بنفش زرد 13 - 11 بنفش
متیل بنفش زرد 0.15 - 3.2 بنفش



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

الکترولیز

تاریخ:چهارشنبه 19 مهر 1391-16:18


تصویر

دید کلی

رسانایی الکترولیتی هنگامی صورت می‌گیرد که یونهای الکترولیت بتوانند آزادانه حرکت کنند، چون در این مورد ، یونها هستند که بار الکتریکی را حمل می‌کنند. به همین دلیل است که رسانش الکترولیتی ، اساسا توسط نمکهای مذاب و محلولهای آبی الکترولیتها صورت می‌گیرد. علاوه بر این ، برای تداوم جریان در یک رسانای الکترولیتی ، لازم است که حرکت یونها با تغییر شیمیایی همراه باشد.

اصول رسانش الکترولیتی

این اصول رسانش الکترولیتی با بررسی الکترولیز NaCl مذاب بین الکترودهای بی‌اثر بهتر متصور می‌گردد. منبع جریان ، الکترونها را به الکترود سمت چپ می‌راند. بنابراین ، می‌توان گفت که این الکترود ، بار منفی پیدا می‌کند. این الکترونها ، از الکترود مثبت سمت راست کشیده می‌شوند. در میدان الکتریکی که بدین ترتیب بوجود می‌آید، یونهای سدیم ( کاتیونها ) به طرف قطب منفی ( کاتد ) و یونهای کلرید ( آنیونها ) به طرف قطب مثبت ( آند ) جذب می‌شوند.

در رسانش الکترولیتی ، بار الکتریکی بوسیله کاتیونها که به طرف کاتد و بوسیله آنیونها که در جهت عکس ، به طرف آند حرکت می‌کنند، حمل می‌شود. برای آنکه یک مدار کامل تشکیل شود، حرکت یونها باید با واکنشهای الکترودی همراه باشد. در کاتد ، اجزای شیمیایی معینی ( که لازم نیست حتما حامل بار باشند ) باید الکترونها را بپذیرند و کاهیده شوند و در آند ، الکترونها باید از اجزای شیمیایی معینی جدا شده ، در نتیجه آن اجزا
اکسید شوند.

یونهای سدیم در کاتد کاهیده می‌شوند:


Na+ + e→Na

یونهای کلرید در آند ، اکسید می‌شوند:


2Cl-→Cl2 + 2e

از جمع این دو معادله جزئی ، واکنش کلی سلول بدست می‌آید:


(2NaCl(l)→2Na(l) + Cl2(g

مسیر جریان الکترونها در الکترولیز

الکترونها از منبع جریان خارج شده ، به طرف کاتد روانه می‌شوند. در آنجا یونهای سدیمی که به طرف این الکترود منفی جذب شده‌اند، الکترونها را می‌گیرند و کاهیده می‌شوند. یونهای کلرید از کاتد دور و به آند کشیده می‌شوند و در نتیجه ، بار منفی را در این جهت حمل می‌کنند. در آند ، الکترونها از یونهای کلرید جدا شده ، بوسیله منبع جریان به طرف خارج سلول رانده می‌شوند، بدین طریق ، مدار کامل می‌شود. البته ، یونهای کلرید با از دست دادن الکترون اکسید شده ، به‌صورت گاز کلر درمی‌آیند.

عوامل موثر بر رسانش الکترولیتی

از آنچه گفته شد، مشخص می‌شود که رسانش الکترولیتی به تحرک یونها مربوطه می‌شود و هر چیز که این یونها را از حرکت باز دارد، موجب ایجاد مقاومت در برابر جریان می‌شود. عواملی که بر رسانش الکترولیتی محلولهای الکترولیت اثر دارند، عبارتند از: جاذبه‌های بین یونی ، حلالپوشی یونها و گرانروی حلال. این عوامل به‌ترتیب به جاذبه‌های بین ذرات ماده حل شده ، جاذبه‌های بین ذرات حلال و ماده حل شده و جاذبه‌های بین ذرات حلال مربوط می‌شوند.

انرژی جنبشی متوسط یونهای ماده حل شده با افزایش
دما زیاد می‌شود. و بنابراین ، مقاومت رساناهای الکترولیتی به‌طور کلی با افزایش دما کاهش می‌یابد (یعنی رسانایی زیاد می‌شود). به‌علاوه ، اثر هر یک از سه عامل مذکور با زیاد شدن دما ، کم می‌شود.

باید توجه داشته باشیم که در هر زمان ، تمام قسمتهای محلول الکترولیت از نظر خنثی می‌ماند، زیرا بار مثبت کلی همه کاتیونها برابر با بار منفی همه آنیونها است.

تصویر

استوکیومتری الکترولیز

روابط کمی میان الکتریسیته و تغییر شیمیایی برای نخستین بار در سالهای 1832 و 1833 بوسیله "مایکل فارادی" بیان شد. برای درک کار فارادی ، بهترین راه مراجعه به نیم واکنشهایی است که به هنگام عمل الکترولیز صورت می‌گیرد. به هنگام الکترولیز سدیم کلرید مذاب ، تغییر در کاتد:


Na+ + e→Na

نشان می‌دهد که برای تولید یک اتم سدیم ، یک الکترون لازم است. پس برای تولید یک مول سدیم فلزی ( 22.9898g Na ) ، یک مول الکترون ( عدد آووگادرو الکترون ) لازم است. مقدار بار معادل با یک مول الکترون ، فارادی (F) نامیده می‌شود. یک فارادی برابر با 96485 کولن است که برای مسائل معمولی ، آن را گرد کرده، برابر با 96500C در نظر می‌گیریم:


1F=96500C

اگر 2F الکتریسیته مصرف شود، 2 مول Na تولید می‌شود. در همان زمان که عده الکترونهایی معادل 1F الکتریسیته به کاتد اضافه شود، همان عده الکترون از آند جدا می‌شود:


2Cl→Cl2(g) + 2e

نتیجه جدا شدن 1mol الکترون (1F) از آند ، تخلیه بار یک مول یون -Cl و تولید 0.5mol گاز کلر است. اگر 2F الکتریسیته در سلول جریان یابد، 2 مول یون تخلیه می‌شود و 1mol گاز Cl2 آزاد می‌شود. بنابراین واکنشهای الکترودی را می‌توان بر حسب مول و فارادی تفسیر کرد. مثلا ، اکسایش آندی یون هیدروکسید:


4OH-→O2(g) + 2H2O + 4e

را می‌توان این طور بیان کرد که وقتی 4F الکتریسیته از سلول می‌گذرد، 4 مول یون -OH ، یک مول گاز O2 و دو مول H2O تولید می‌کند. روابط میان مولهای ماده و فارادی های الکتریسیته ، مبنای محاسبات استوکیومتری مربوط به الکترولیز است. به خاطر داشته باشید که یک آمپر (1A) برابر آهنگ جریان یک کولن (1C) در ثانیه است.



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

خوردگی فلزات و ترمودینامیک شیمیایی

تاریخ:پنجشنبه 13 مهر 1391-22:08



تصویر
مکانیسم خوردگی فلزات ‌(آهن)

دید کلی

یکی از مهمترین راههای قطع وابستگی غیر ضروری ، شناخت مشکلات و موانع و راههای تقلیل اثرات سوء آنها می‌باشد. به همین قیاس ، در صنعت و بخصوص صنایع کشور ما ، برای جلوگیری از هدر رفتن منابع مالی و انسانی که یکی از پیامدهای آن ، تقویت هر چه بیشتر بندهای وابستگی می‌باشد، لازم است تا نقاط ضعف صنعت را بخوبی بشناسیم و در آن راستا ، به تقویت هر چه بیشتر توان علمی خود بپردازیم.

خوردگی یکی از موارد معدودی است که اثر خود را نه تنها در مراحل طراحی ، ساخت و تولید و بهره برداری نمایان می‌سازد، بلکه مبالغ عظیمی را نیز در مرحله حفاظت و نگهداری به خود اختصاص می‌دهد.

آسیب‌شناسی صنعت

برای شناخت صحیح‌تر خوردگی و اهمیت آن باید به آسیب‌شناسی صنعت پرداخت، زیرا یکی از مهمترین عواملی که گریبانگیر رشد صنایع و به خصوص صنایع ایرانی می‌باشد، عدم درک عمیق مساله خوردگی است. شاید بتوان دو دلیل عمده برای این بی‌عنایتی برشمرد:


  • در رابطه با ضرر و زیانهای وارد آمده توسط خوردگی به صنایع ، نه تنها آمار مستند بلکه حتی تخمین‌های رسمی مستند و قابل انکار وجود ندارد، لذا مشخص نیست که خوردگی چگونه به آرامی اما بطور مداوم ثروتهای ملی را هدر می‌دهد.

  • ابعاد فاجعه انگیز خوردگی از نظر اتلاف ماده و انرژی و ضرر و زیانهای زیست محیطی روشن نیست. لذا اکثرا با تصور اینکه مسائل مالی مربوط به خوردگی در بررسیهای مالی- اقتصادی در سر فصل استهلاک دیده می‌شوند، از ابعاد واقعی قضیه بی‌خبر می‌مانند و در نتیجه اهمیت مساله همواره در هاله ای از ابهام باقی می‌ماند.

مهندسی خوردگی

در این سلسله مقالات ، خواهیم کوشید جنبه ای از مهندسی را که به آن ««مهندسی خوردگی»» اطلاق می‌شود، به خوانندگان معرفی نماییم. هدف این نوشته‌ها ، ایجاد معلومان نیست، چه ، بسیاری از آنچه را که در اینجا می‌آید، می‌توان در کتب و مقالات تخصصی یافت، بلکه منظور اصلی ، ایجاد شناخت و آگاهی (هر چند جزئی) درباره یکی از مشکلات صنعتی است تا دانش پژوهان در انتخاب رشته‌های تحصیلی با آگاهی و توجه بیشتری اقدام کنند.

خوردگی چیست؟

خوردگی در زبان فارسی ترجمه واژه ای انگلیسی است که معنای آن جویده شده و گاز گرفته شده است. به نظر می‌رسد ظاهر قطعه خورده شده ، این تداعی معنایی را سبب شده باشد. برای بیشتر مردم، خوردگی با مصادیقش شناخته می‌شود، از قبیل زنگ زدگی و سیاه شدن قاشقهای نقره‌ای. در واقع خوردگی همه اینها هست، اما به‌تنهایی هیچ یک نیست. بطور مثال ، زنگ زدگی فقط به خوردگی آلیاژهای آهن اطلاق می‌شود.

استاندارد ایزو 8044 ، خوردگی را بدین شکل تعریف می‌کند:


««واکنش فیزیکی – شیمیایی متقابل بین فلز و محیط اطرافش که معمولا دارای طبیعت الکتروشیمیایی است و نتیجه‌اش تغییر در خواص فلز می‌باشد. این تغییرات خواص ممکن است منجر به از دست رفتن عملکرد فلز ، محیط یا دستگاهی شود که این دو ، قسمتی از آن را تشکیل می‌دهند. »»

تصویر

ترمودینامیک و خوردگی

ترمودینامیک یکی از رشته های فیزیکی – شیمی، است. یکی از ویژگی‌های علم ترمودینامیک این است که می‌تواند پیش‌بینی کند که آیا واکنشهای خاصی رخ خواهند داد یا نه. تعیین زمانی واکنشی که ترمودینامیک ، انجام آن را پیش بینی می‌کند، موضوع علم سینتیک است. خوردگی را می‌توان میل ترمودینامیکی برای بازگشت به اصل خود فلز دانست و آن را چنین توضیح داد:

فلزات اکثرا به شکل
ترکیبات شیمیایی در سنگهای معدنی موجود هستند. فلز در این حالت به خاطر وضعیت ترمودینامیکی خود ، حالت پایدار دارد، یعنی از نظر ترمودینامیکی اگر نیرویی از خارج بر سنگ معدن وارد نشود، فلز میل دارد که در سنگ بماند و حالت ترکیبی خود را حفظ نماید. وقتی سنگ معدن از معدن جدا می‌شود، طی فرآیندهای خاصی ، فلز از سنگ استخراج می‌شود و به حالت فلز خالص در می آید.

عمل استخراج فلز ، از نظر شیمیایی یک فرآیند الکترون گیری یا
احیا به حساب می‌آید. به این ترتیب فلز موجود در سنگ معدن ، الکترون می‌گیرد و به حالت فلز خالص در می‌آید. اما در اینجا وضعیتی ناگوار وجود دارد: الکترونهایی که طی فرآیند استخراج گرفته شده‌اند، برای فلز به شکل مهمان ناخوانده در می‌آیند. فلز علاوه بر الکترونهایی که خود دارد، الکترونهای زیادتری را نیز طی استخراج به سوی خود فرا خوانده ، با مهمان کردن الکترونهای اضافی از چنگ سنگ گریخته است. اما این مهمانان تبدیل به ناخواستگانی شده‌اند که فلز دائما در جستجوی راهی برای بیرون راندن آنهاست. به زبان ترمودینامیکی ، بی‌قراری فلز را ناپایداری ترمودینامیکی می‌نامند.

هنگامی که فلز موفق به از دست دادن الکترون می‌شود، واکنش
اکسیداسیون رخ می‌دهد و می‌گویند خوردگی اتفاق افتاده است. وقتی فلز خورده شد، آنچه از واکنش باقی می‌ماند (اصطلاحا محصولات خوردگی) به لحاظ ترمودینامیکی پایدار خواهد بود و از این نظر مانند فلز در حالت معدنی (در حالتی که به شکل ترکیب در سنگ معدن وجود داشت) رفتار می‌کند.

جالب آنکه از نظر شیمیایی نیز محصولات خوردگی مثل سولفات آهن ، اکسید روی و غیره ، همان ترکیباتی هستند که در سنگ معدن فلز یافت می‌شود.

خوردگی ، یک واکنش طبیعی

از آنچه گفته شد، می‌توان نتیجه گرفت که خوردگی یک واکنش طبیعی است و انجام می‌شود. اما چنانکه خواهیم دید، خوردگی دارای زیانهای بسیاری است که ما را وادار می‌کند تا ترجیح دهیم این واکنش انجام نشود. انجام نشدن خوردگی مثل آن است که بخواهیم آبشاری به جای آنکه از بالای صخره به پایین بریزد، از پایین به بالا بریزد. اگر چه امکان ندارد که ریزش آبشار را وارونه کنیم، اما خواهیم دید که روشهایی وجود دارند که با استفاده از آنها می‌توان نه تنها خوردگی را مهار کرد، بلکه آن را برعکس نمود!



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

آشنایی با فرایند کراکینگ کاتالیزوری

تاریخ:سه شنبه 14 شهریور 1391-13:35

مقدمه


کراکینگ کاتالیزوری بستر سیال از مهمترین فرایندهای پالایشی است که برای تبدیل برشهای سنگین به مواد سبکتر و با ارزش تر به ویژه بنزین به کار می رود. خوراک این واحد معمولاً گازوئیل تقطیر اولیه می باشد ولی می توان گازوئیل های تولید شده در سایر واحدها را نیز به عنوان خوراک بکار برد. فرآورده های این واحد نیز به ترتیب عبارتند از : گازهای سبک سیر شده و سیر نشده، بنزین ، گازوئیل سبک و سنگین و کک که بر روی کاتالیزورها می نشیند. در صنعت بیشتر از کاتالیزورهای سیسلس آلومین بلورین و یا آمورف استفاده می گردد. واحد کراکینگ کاتالیزوری بستر سیال به دو شکل پهلو به پهلو و یا سیستم دودکشی ساخته شده که نوع اول آن رایج تر می باشد
آشنایی با این فرایند

تاکنون مقالات زیادی پیرامون مدل سازی و کنترل فرایند FCC ارائه شده است که همگی دارای پیچیدگی های زیادی هستند. این پیچیدگی ها متاثر از شرایط خاص حاکم بر این فرایند بوده که البته دیدگاه ها و فرضیات بکار گرفته شده نیز در افزایش یا کاهش این پیچیدگی ها بی تاثیر نمی باشد. همچنین اکثر مطالعات انجام گرفته بر روی فرایند FCC بر پایه تجربی و نیمه تجربی استوار بوده و مدل بدست آمده در هر بررسی تنها در محدوده خاصی از عملیات جوابگو بوده و تغییر شرایط عملیاتی صحت مدل را زیر سوال می برد. اما برخی دیگر از این مدل ها همچون مدل Rohani و همکارانش مناسب به نظر می رسند[2]. بطور کلی می توان گفت در اغلب مقالات ارائه شده بزرگترین اختلاف در مدل سازی بستر متراکم موجود در Regenerator مشاهده می شود. در اکثر این مدل ها حتی اثر فضای خالی موجود در بالای بستر متراکم نادیده گرفته شده است.Errazu در سال1979در این ارتباط مطالعات زیادی بر روی هیدرودینامیک Regenerator و واکنش های انجام داد. در سال 1990 نیز levenspiel و ***ii فرایند انجام گرفته در Regenerator را به صورت دوفازی در نظر گرفتند و جزئیات بیشتری را پیرامون کنترل این فرایند ارائه کردند
شرح فرایند
در حالت کلی خوراک پیش گرم شده از واحد تقطیر اتمسفریک تامین شده و با جریان برگشتی حاصل از پسماند برج تفکیک، ترکیب می گردد. این مخلوط در تماس با کاتالیست داغ تبخیر شده و در انتهای قسمت Riser راکتور تزریق می شود و آنگاه واکنش کراکینگ کاتالیستی در فضای اندک Riser رخ می دهد. تحت شرایط عملیاتی عادی، نسبت کاتالیست به نفت (COR) بین 4 تا 9 متغیر است. واکنش انجام گرفته نیز گرماگیر بوده و گرمای لازم را از کاتالیست های داغ تامین می کند. با توجه به فرضیات مدل Rohani می توان سرعت لغزشی میان فاز جامد و فاز بخار در Riser را برابر 2.0 در نظر گرفت. همچنین به علت پایین بودن زمان اقامت گاز در Riser (حدود 4-2 ثانیه) در مقایسه با زمان اقامت در Regenerator که در حدود 30 ثانیه است، رفتار در ناحیه Riser را می توان شبه پایا در نظر گرفت[2،3]. در حین انجام واکنش کراکینگ کاتالیستی، کک در اطراف کاتالیست ها جمع شده و فرایند را متوقف می سازد. بعد از خروج از Riser بخار حاصل در شکل سیلکونی راکتور از کاتالیست جدا می گردد و این بخار به مرحله تفکیک هدایت می شود تا فراورده های مختلف موجود در آن از یکدیگر جدا شوند. کاتالیست مصرفی نیز از پایین راکتور تخلیه شده و وارد ناحیه Stripping می گردد تا بکمک بخار آب بطور مناسبی از فاز بخار باقیمانده در آنها پاک گردند. ارتفاع کاتالیست جمع شده در درون راکتور یکی از پارامترهای مهم این فرایند بوده که هد فشاری جهت برقراری جریان کاتالیست از راکتور به Regenerator را فراهم می آورد و این جریان بکمک شیری از نوع SlidValve کنترل می شود که در واقع ارتفاع مذکور را کنترل می کند. واکنش های ناچیزی هم در درون راکتور انجام می شود. لازم به ذکر است که تخلخل بستر کاتالیستی درون راکتور در حدود 0.4 می باشد[2].
در درون Regenerator نیز کک تشکیل شده روی کاتالیست ها بکمک هوای اضافی سوزانده می شود و از این طریق کاتالیست مجدداً فعال شده و گرمایی رانیز که در این مرحله جذب می کند، برای انجام واکنش کراکینگ در راکتور بکار می گیرد. هوای اضافی وارد شده به سیستم نیز هم برای تامین هوای اضافی فرایند احتراق و هم برای حفظ سیالیت بستر کاتالیستی مورد استفاده قرار می گیرد. کاتالیست های بازیابی شده هم دوباره وارد Riser شده و شیری که در سر راه آن تعبیه شده، با کنترل شدت عبور، گرمای ورودی به سیستم را کنترل می کند که نقش اساسی را در شکل گیری نوع محصولات خواهد داشت. در مدلسازی بخش Regenerator آنرا یک بستر سیال دو فازی در نظر می گیریم. این مدل دارای دو قسمت فاز حباب و فاز امولسیونی می باشد و انتقال جرم و حرارت بین این دو فاز بصورت مداوم صورت می گیرد. بطوریکه اکسیژن از فاز حباب به فاز امولسیونی منتقل شده در حالی که CO2 و CO و گرما در جهت مخالف انتقال می یابند
تفاوت اساسی دیگری که در نوع مدلسازی مقالات ارائه شده مشاهده می گردد، تفاوت در نوع ارتباط میان مواد شرکت کننده در واکنش کراکینگ است. این تفاوت در همان ابتدای مدلسازی به وجود آمده و بر ادامه عملیات موثر می باشد. اولین و ساده ترین حالت توسط Weekman و همکارانش در سال 1970 ارائه شد که ارتباطی سه گره ای را میان مواد واکنشگر در نظر گرفته بود. البته این افراد مدل خود را تا سال 1976 گشترش داده و مدلی 10 گره ای را پیشنهاد دادند. Pitault نیز در سال 1994 مدلی 18 گره ای ارائه داد. مدل مناسبی که Rohani و همکارانش ارائه کردند نیز حالت 4 گره ای داشت. در این مدل برای واکنش های قسمت Riser مدلی چهارگره ای فرض شده و برای Regenerator نیز مدل ارائه شده توسط levenspiel و ***ii را مناسب فرض کرده اند. تا جایی که مدل نهایی کمترین بیان تجربی را داشته و به وضوح خصوصیات دینامیکی واحد FCC را بیان می کند
زئولیت ها و مولکولارسیوها-آلومینوسیلیکات های طبیعی و سیلیس آلومین های آمورف سنتزی و عنوان شده که زئولیت ها به علت فعالیت بیشتر بر بازده و کیفیت بنزین تولیدی از فرآیند تاثیر مثبت دارد.



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

گاز ایده آل

تاریخ:جمعه 30 تیر 1391-10:18

ایزوترم های یک گاز ایده آل

گاز ایده‌آل یک تقریب از گازهای حقیقی است که برای مقاصد محاسباتی بکار می‌رود. گاز ایده‌آل به گازی گفته می‌شود که:

  1. بین ذرات آن نیرویی وجود نداشته باشد و تنها برهم‌کنش بین ذرات، برخورد صلب باشد.
  2. اندازهٔ ذرات نسبت به مسیر آزاد میانگین ناچیز باشد.

گازهای حقیقی را در چگالی‌های پایین با تقریب خوبی می‌توان ایده‌آل فرض کرد.

قانون گازهای ایده‌آل

گازهای ایده‌آل در حالت تعادل داخلی از معادلهٔ گاز ایده‌آل پیروی می‌کنند:

PV = nRT

که در آن P فشار داخلی سیستم، V حجم سیستم، n تعداد مول‌های ذرات سیستم، R ثابت جهانی گازها و T دمای سیستم با یکای کلوین است.

اثبات

برای اثبات این قانون ، اول لازم است که با قانون های بویل و شارل آشنا شویم .

قانون بویل

رابطهٔ بین فشار و حجم یک گاز در 1662 میلادی توسط رابرت بویل ( Robert Boyle ) اندازه گیری شد . بویل متوجه شد که افزایش فشار وارد شده بر یک گاز با کاهش حجم آن متناسب است . اگر فشار دو برابر شود ، حجم به نصف کاهش می‌یابد . اگر فشار سه برابر شود ، حجم به یک سوم حجم اولیه اش می‌رسد . قانون بویل می‌گوید که در دمای ثابت ، حجم گاز با فشار رابطهٔ عکس دارد :

V \propto \frac{1}{P}

قانون شارل

رابطهٔ بین حجم و دمای یک گاز در 1787 میلادی توسط ژاک شارل ( Jacques Charles ) مطالعه شد و نتایج او به طور قابل ملاحظه‌ای توسط شاگردانش ژوزف گیلوساک ( Joseph Gay - Lussac ) گسترش یافت . براساس این قانون حجم تمام گازها ، در فشار ثابت ، با دمای مطلق آن گاز رابطهٔ مستقیم دارد :

V \propto T

قانون گازهای ایده آل

در دما و فشار ثابت حجم یک گاز با تعداد مول های آن نسبت مستقیم دارد . حجم یک مول گاز نصف حجم اشغال شده توسط 2 مول گاز می‌باشد . بنابراین قانون و قوانین بویل و شارل می‌توان گفت که :

V \propto (\frac{1}{P})(T)(n)

با استفاده از یک عدد ثابت می‌توان تناسب را به تساوی تبدیل کرد :

V=R(\frac{1}{P})(T)(n)

که از آن نتیجه می‌شود :

PV = nRT

قانون گازهای ایده آل توسط نظریهٔ جنبشی گازها

نمونه‌ای از یک گاز شامل N (عدد آووگادرو) مولکول، هر کدام با جرم m را در نظر بگیرید. اگر این نمونه در مکعبی با یال a باشد، حجم آن برابر خواهد شد با:

V = a3

با فرض اینکه یک سوم مولکول‌ها در جهت محور x، و دو سوم در جهت محورهای y و z حرکت کنند، آنگاه در هر ۲a حرکت یک مولکول گاز در جهت محور x داخل مکعب، مولکول حداقل یکبار به دیوارهٔ مکعب برخورد می‌کند. با فرض اینکه سرعت میانگین هر مولکول گاز برابر u است، در هر ثانیه هر مولکول گاز به اندازهٔ \frac {u}{2a} برخورد دارد و در هر برخورد به اندازهٔ ۲mu اندازهٔ حرکت آن تغییر می‌کند. پس در هر ثانیه هر مولکول گاز به اندازهٔ زیر به دیوارهٔ مکعب نیرو وارد می‌کند :

(\frac {u}{2a})(2mu)= \frac {mu^2}{a}

از این رو برای تمام مولکولهای گاز می‌توان نوشت :

(\frac{N}{3}) (\frac{mu^2}{a})

فشار عبارت است از نیرو بر سطح. پس :

P = \frac{\tfrac {Nmu^2}{3a}}{a^2} = \frac {Nmu^2}{3a^3} = \frac {Nmu^2}{3V}

پس می‌توان نوشت :

PV = \frac {1}{3} Nmu^2 = (\tfrac {2}{3} N) (\tfrac {1}{2} mu^2) = \tfrac {2}{3} N (KE)

که KE در آن میانگین انرژی جنبشی مولکولی گاز می‌باشد. و از آنجا که انرزی جنبشی یک گاز (بنابر نظریه جنبشی گازها) با دمای مطلق آن نسبت مستقیم دارد و همچنین N \propto n، پس :

N (KE) \propto nT

که با ضرب کردن عدد ثابتی مثل R، می‌توان تناسب را به تساوی تبدیل کرد :

PV = nRT



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

حل چند مسئله در محاسبات استوکیومتری

تاریخ:چهارشنبه 28 تیر 1391-17:16

در حل مسئله، برخی مسئله ها را می توان با روش هایی ساده به جز آن چه در کتاب های درسی گفته شده است حل کرد. در این پست چند مسئله با حل آنه آورده شده است. البته برخی از این مسئله ها شاید با روش هایی ساده تر نیز به جواب برسند.

1- در هر واحد فرمولی ویتامین D1 دو اتم اکسیژن وجود دارد. 03/4 درصد این ترکیب را اکسیژن تشکیل می دهد . بر اساس این داده ها، جرم مولی ویتامین D1 را حساب کنید .

پاسخ : با توجه به این که جرم دو اتم اکسیژن برابر با32می باشد، پس می توان نتیجه گرفت که03/4 درصد واحد فرمولی این ترکیب جرمی برابر 32 دارد . با یک تناسب ساده جرم فرمولی این ترکیب بدست می آید .

4.03% 32 amu

100% X

X = 794 amu جرم واحد فرمولی ترکیب مورد نظر

2- عنصر M ، کلرید MCl2 می دهد. این کلرید0/65 درصد کلر دارد. جرم اتمی M را با توجه به اینکه جرم اتمی کلر 5/35 است، محاسبه کنید .

پاسخ : ترکیب دارای دو اتم کلر است که جرم فرمولی آنها 71 می باشد و 0/65 درصد جرم ترکیب را تشکیل می دهد .

65% 71 amu

100% X X = 109.23

MCl2 : M + (2 × 35.5 ) = 109.23 M = 38.23 amu

3- عنصرهای X و Y ترکیبی تشکیل می دهند که 40٪ جرمی X و 60٪ جرمی Y دارد . جرم اتمی X دو برابر جرم اتمی Y است . فرمول تجربی این ترکیب چیست ؟

پاسخ : می توان مسئله را از روش تعیین فرمول تجربی با داشتن درصد عنصرهای تشکیل دهنده حل کرد . با توجه به اینکه جرم اتمی X دو برابر جرم اتمی Y می باشد، محاسبات به این صورت انجام می گیرد .

۲۰ = ۲/۴۰ برای X

۱ = ۲۰/۲۰

۶۰=۱/۶۰ برای

۲۰=۳/۶۰

فرمول تجربی این ترکیب X1Y3 می باشد .

4- مقدار معینی FeCl3 را کاملا اکسید می کنیم تا همه کلر آن به صورت گاز Cl2 آزاد شود . گاز Cl2 حاصل را برای تبدیل Si به SiCl4 به کار می بریم، 86/4 مول SiCl4 تولید می شود . چند مول FeCl3 اکسید شده است ؟

پاسخ : ابتدا واکنشهای انجام شده را به صورت موازنه شده می نویسیم.

2FeCl3 → 2Fe + 3Cl2

Si + 2Cl2 → SiCl4

برای حل این نوع مسئله ها باید موازنه را به صورتی انجام دهیم که ضرایب استوکیومتری واکنش دهنده ها در هر مرحله، همان ضرایب استوکیومتری فرآورده های واکنش مرحله قبل باشد . پس در این مسئله ضرایب استوکیومتری واکنش دهنده های مرحله دوم، باید با ضرایب استوکیومتری فرآورده های مرحله یک برابر باشد . ضرایب موازنه به این صورت تغییر می کنند.

4FeCl3 → 4Fe + 6Cl2

3Si + 6Cl2 → 3SiCl4

در این مسئله SiCl4 معلوم و FeCl3 مجهول می باشند . با شرحی که در موازنه واکنشها داده شد، چون ضرایب استوکیومتری در دو واکنش معادل شده است، لازم نیست که بخواهیم از واکنش اول مقدار کلر را محاسبه کرده و مقدار بدست آمده را در واکنش دوم وارد کنیم و فقط کافی است بر اساس یک معلوم و مجهول داده شده در مسئله و در نظر گرفتن ضرایب موازنه جواب را بدست آورد.

5- برای تولید فسفر (V) اکسید، بخار فسفر و گاز اکسیژن به نسبت حجمی1 به5 ترکیب می شوند . مولکول بخار فسفر چند اتم فسفر دارد ؟

پاسخ : نسبتهای حجمی را به عنوان ضرایب استوکیومتری در معادله واکنش وارد می کنیم.

1P4 + 5O2 → P4O10

طبق معادله موازنه شده در یک مولکول فراورده 4 اتم فسفر دیده می شود پس بخار فسفر دارای چهار اتم بوده است .

6- از ترکیب یک حجم کربن مونوکسید با یک حجم گاز کلر، یک حجم گازی به نام فسژن به دست می آید . فرمول شیمیائی فسژن چیست ؟

پاسخ : نسبتهای حجمی را به عنوان ضرایب استوکیومتری در معادله واکنش قرار می دهیم .

CO + Cl2 → COCl2 فرمول شیمیائی فسژن

7- 0/2 لیتر محلول 0/3 مولار AgNO3 را با 0/3 لیتر محلول 0/1 مولار BaCl2 مخلوط کرده ایم . مولاریته هر یون را در محلول حساب کنید .

پاسخ : معادله یونش هر یک از ترکیبهای داده شده به صورت زیر است .

AgNO3 → Ag+ + NO3- , BaCl2 → Ba2+ + 2Cl-

چون محلولها با هم درون یک ظرف ریخته شده اند، حجم نهائی مخلوط برابر L 5 = L 3 + L 2 می باشد بنابر این باید غلظت هر یون را با استفاده از رابطه Cm1 . V1 = Cm2 . V2 در حجم 5 لیتر محاسبه کنیم .

[Ag+] اولیه = [AgNO3] = 3 mol/L , [NO3-] اولیه = [AgNO3] = 3 mol/L

[Ba2+] اولیه = [BaCl2] = 1 mol/L , [Cl-] اولیه = 2[BaCl2] = 2 mol/L

تعیین غلظتها در حجم نهائی محلول ( 5 لیتر ) :

[Ag+] برای : Cm1 .V1 = Cm2 . V2 3 مولار × 2 L = Cm2 × 5 L Cm2 = 1.2 mol/L

[NO3-] برای : Cm1 .V1 = Cm2 . V2 3 مولار × 2 L = Cm2 × 5 L Cm2 = 1.2 mol/L

[Ba2+] برای : Cm1 .V1 = Cm2 . V2 1 مولار × 3 L = Cm2 × 5 L Cm2 = 0.6 mol/L

[Cl-] برای : Cm1 .V1 = Cm2 . V2 2 مولار × 3 L = Cm2 × 5 L Cm2 = 1.2 mol/L

8- اگر درصد جرمی عنصر M در اکسیدی از آن با فرمول MO برابر 80 درصد باشد، درصد جرمی آن در اکسید M2O آن کدام است؟

1) 98/78 2) 86/87 3) 88/88 4) 98/89 ( کنکور سراسری ریاضی 86 )

پاسخ : در اکسید MO ، 80 درصد فلز M وجود دارد پس 20 درصد آن اکسیژن است . با توجه فرمول MO که یک اتم اکسژن در آن وجود دارد، می توان جرم فلز M را بدست آورد.

20% 16 g

100% X

X = 80 g MO جرم مولی

جرم مولی M = 80 – 16 = 64

با داشتن جرم مولی M می توان درصد آن را در اکسید M2O بدست آورد .

M2O جرم مولی = ( 2 × 64 ) + 16 = 144

144 g M2O ( 2 × 64 = 128 )g M

100 g M2O X X = 88.88%

9- اگر8 گرم از یک نمونه مس(II) اکسید ناخالص در واکنش کامل با گاز هیدروژن در گرما 2/1گرم کاهش جرم پیدا کند. درصد خلوص این اکسید در این نمونه کدام است؟(ناخالصی با هیدروژن واکنش نمی دهد.g/mol Cu = 64 , O = 16 )

پاسخ : معادله موازنه شده واکنش به این صورت است.

CuO(s) + H2(g) → Cu(s) + H2O(g)

کاهش جرم مربوط است به اکسیژن موجود در نمونه. یعنی می توان گفت:

CuO ~ O

80 g 16 g

X = 1.2 g X = 6 g مقدار خالص نمونه

درصد خلوص =




داغ کن - کلوب دات کام
لطفا نظر بدهید() 

موازنه به روش وارسی

تاریخ:چهارشنبه 28 تیر 1391-17:13

ضریب مولی یا ضریب استوکیومتری چیست :

ضریب استوکیومتری عددی است که در سمت چپ نماد شیمیایی یک عنصر یا فرمول شیمیایی یک ترکیب قرار می گیرد و تعداد آن را مشخص می کند. مثلا وقتی می نویسیم ۵Fe عدد 5 ضریب استوکیومتری یا ضریب مولی آهن را نشان می دهد و مفهوم آن پنج اتم آهن است. یا وقتی می نویسیم ۳H2O ، عدد سه ضریب استوکیومتری آب را نشان می دهد، یعنی سه مولکول آب. ضریب استوکیومتری یک ترکیب علاوه بر آنکه تعداد واحد فرمولی آن ترکیب را نشان می دهد، در شمارش اتمهای سازنده آن ترکیب نیز محاسبه می شود.

مثال :

در 5 مولکول سولفوریک اسید، H2SO4 ، تعداد 10 اتم H هیدروژن ، 5 اتم S گوگرد و 20 اتم O اکسیژن وجود دارد.

موازنه واکنشهای شیمیایی به روش وارسی :

برای موازنه واکنشهای شیمیایی به روش وارسی به این صورت عمل می کنیم.

1- ترکیبی را که بیشترین تعداد اتمها در ساختمان آن وجود دارد ( از بین واکنش دهنده ها یا فرآورده ها ) انتخاب می کنیم.

2- موازنه را از عنصری در این ترکیب آغاز می کنیم که بیشترین شمار اتم را داشته باشد و پراکندگی آن در معادله واکنش کمتر باشد. ( منظور از پراکندگی کمتر این است که آن اتم در معادله شیمیایی واکنش در ترکیبهای کمتری دیده شود )

3- در مرحله آخر ابتدا تعداد اتمهای اکسیژن و سپس اتمهای هیدروژن را موازنه می کنیم.

توجه داشته باشید که اتمهای اکسیژن و هیدروژن حتما نباید در مرحله آخر موازنه شوند و در مواردی این قاعده اجرا نمی شود.

در موازنه به روش وارسی باید به نکات زیر نیز توجه داشت :

- اتمهای مناسب برای شروع موازنه باید فقط به صورت ترکیب باشند. مثلا در معادله واکنش زیر 3 نوع اتم (C , N , O ) وجود دارد که می توان موازنه را از آنها شروع کرد، اما چون اکسیژن در سمت چپ به صورت عنصر است موازنه با آن شروع نمی شود.

CH4 + NH3 + O2 HCN + H2O

معادله موازنه شده نباید دارای ضرایب کسری باشد. اگر در موازنه به ضرایب کسری برخوردیم ، تمام ضرایب معادله را در عددی مناسب ضرب می کنیم تا ضرایب کسری از بین بروند. برای مثال معادله واکنش سوختن گاز اتان پس از موازنه به صورت زیر است.

C2H6 + 7/2O2 2CO2 + 3H2O

برای از بین بردن ضریب کسری 2/7 برای اکسیژن می توان تمام ضریبهای معادله را در عدد 2 ضرب کرد. تا معادله به صورت زیر در آید

2C2H6 + 7O2 4CO2 + 6H2O

- ضریبهای موازنه باید کوچکترین عددهای صحیح را برای آن معادله شامل شوند. مثلا معادله بالا را می تونستیم با ضریبهای بزرگتری نیز موازنه کنیم .

4C2H6 + 14O2 6CO2 + 12H2O

این ضریبها عددهای صحیح هستند ولی می توان آنها را ساده کرد.

اهمیت استفاده از ضریبهای غیر کسری و کوچک در محاسبات استوکیومتری نشان داده می شود.

حل چند تمرین در مورد موازنه به روش وارسی :

موازنه را از اتم کربن یا نیتروژن شروع می کنیم.

CH4 + NH3 + O2 HCN + H2O

بعد از موازنه اتمهای C معادله به صورت مقابل نوشته می شود.

1CH4 + NH3 + O2 1HCN + H2O

موازنه اتمهای N ادامه می یابد.

1CH4 + 1NH3 + O2 1HCN + H2O

و سرانجام اتمهای O موازنه شده و معادله موازنه شده بدست می آید.

۱CH4 + 1NH3 + 3/2O2 1HCN + 3H2O

سپس معادله در 2 ضرب می شود تا ضریب کسری از بین برود.

2CH4 + 2NH3 + 3O2 2HCN + 6H2O

اتم P پراکندگی زیادی دارد در معادله در 4 جا دیده می شود

P2I4 + P4 + H2O PH4I + H3PO4

پس موازنه با آن نباید شروع شود. دو نوع اتم ( I , O ) در هر طرف معادله فقط در یک ماده ظاهر شده اند و هر دو به صورت ترکیب هستند اما اکسیژن در ترکیبی با بیشترین تعداد اتم است ( H3PO4 ) . بنابر این موازنه با اتمهای O آغاز می شود :

P2I4 + P4 + 4H20 PH4I + 1H3PO4

با موازنه اتمهای H می نویسیم

P2I4 + P4 + 4H2O 5/4PH4I + 1H3PO4

بعد از موازنه اتمهای I داریم

5/16P2I4 + P4 + H2O 5/4PH4I + 1H3PO4

سرانجام معادله را برای اتمهای P موازنه می کنیم.

5/16P2I4 + 13/32P4 + 4H20 5/4PH4I + 1H3PO4

موازنه معادله های یونی :

برخی معادله های یونی را نیز می توان به روش وارسی موازنه کرد. در موازنه این نوع معادله ها باید علاوه بر موازنه تعداد اتمها در دو سمت معادله تعداد بارهای منفی یا مثبت نیز در دو سمت معادله برابر شوند. در این نوع معادله ها بهتر است ابتدا با استفاده از تغییر عدد اکسایش ضرایب موازنه را برای اتمهای که عدد اکسایش آنها تغییر کرده است را به دست آوریم. در معادله زیر عدد اکسایش کلر در Cl2 صفر و در ClO3- ، 5+ می باشد یعنی تغییر عدد اکسایش 5 درجه است. از طرفی عدد اکسایش کلر در یونCl- ، 1- می باشد. پس تغییر عدد اکسایش یک درجه است. تغییر عدد اکسایش در ClO3- را ضریب Cl- و تغییر عدد اکسایش در Cl- را ضریب ClO3- قرار می دهیم.

Cl2 + OH- ClO3- + Cl- + H2O

Cl2 + OH- 1ClO3- + 5Cl- + H2O

برای موازنه بارهای منفی به OH- ضریب 6 می دهیم.

Cl2 + 6OH- 1ClO3- + 5Cl- + H2O

هیدروژنها را موازنه می کنیم.

Cl2 + 6OH- 1ClO3- + 5Cl- + 3H20

با موازنه اتمهای کلر ، معادله موزنه می شود.

3Cl2 + 6OH- 1ClO3- + 5Cl- + 3H2O

در تهیه این مبحث از مقاله موازنه به روش وارسی که توسط دوست و همکار بزرگوارم جناب آقای بهزادی دبیر محترم شیمی در مجله رشد آموزش شیمی چاپ شده بود استفاده شده است.




داغ کن - کلوب دات کام
لطفا نظر بدهید() 


  • تعداد صفحات :2
  • 1  
  • 2  
شبکه اجتماعی فارسی کلوب | Buy Website Traffic | Buy Targeted Website Traffic