آموختن علم و دانش بیشتر

جیوه

تاریخ:پنجشنبه 20 مهر 1391-16:22


Gold - Mercury - Thallium
__Hg''
uub

img/daneshnameh_up/7/78/Hg_TableImage.png
جدول کامل
عمومی
نام , علامت اختصاری , شماره Mercury, Hg, 80
گروه شیمیایی فلز انتقالی
گروه , تناوب , بلوک 12 IIB , 6 , d
جرم حجمی , سختی 13579.04 kg/m3, 1.5
رنگ سفید نقره‌ای
img/daneshnameh_up/b/bf/125pxHg2C80.jpg
خواص اتمی
وزن اتمی 200.59 amu
شعاع اتمی (calc.) 150 (171) pm
شعاع کووالانسی 149 pm
شعاع وندروالس 155 pm
ساختار الکترونی Xe]4f14 5d10 6 s2]
e بازای هر سطح انرژی 2, 8, 18, 32, 18, 2
درجه اکسیداسیون (اکسید) 2, 1 باز ملایم
ساختار کریستالی رومبوهدرال
خواص فیزیکی
حالت ماده مایع (مغناطیسی)
نقطه ذوب 1 E2 K (-37.89 °F)
نقطه جوش 629.88 K (674.11 °F)
حجم مولی 14.09 scientific notation|ש»10-6 m3/mol
گرمای تبخیر 59.229 kJ/mol
گرمای هم‌جوشی 2.295 kJ/mol
فشار بخار 0.0002 Pa at 234 K
سرعت صوت 1407 m/s at 293.15 K
متفرقه
الکترونگاتیویته 2.00 (درجه پائولینگ)
ظرفیت گرمایی ویژه 140 J/kg*K
رسانائی الکتریکی 1.04 106/m اهم
رسانائی گرمایی 8.34 W/m*K
1st پتانسیل یونیزاسیون 1007.1 kJ/mol
2nd پتانسیل یونیزاسیون 1810 kJ/mol
3rd پتانسیل یونیزاسیون 3300 kJ/mol
پایدارترین ایزوتوپها
iso NA نیم عمر DM DE MeV DP
194Hg {syn.} 444 y ε 0.040 194Au
196Hg 0.15% Hgبا116نوترون پایدار است
198Hg 9.97% Hg با 118 نوترون پایدار است
199Hg 16.87% Hg با 119 نوترون پایدار است
200Hg 23.1% Hg با 120 نوترون پایدار است
201Hg 13.18% Hg با 121 نوترون پایدار است
202Hg 29.86% Hg با 122 نوترون پایدار است
204Hg 6.87% Hg با 124 نوترون پایدار است
واحدهای SI & STP استفاده شده ، مگر آنکه ذکر شده باشد.

اطلاعات اولیه

جیوه که آن را سیماب ( quicksilver ) هم می‌نامند عنصر شیمیایی است که در جدول تناوبی دارای نشان Hg و عدد اتمی 80 می‌باشد. جیوه که فلزی سبک ، نقره‌ای ، سمی و جزء عناصر واسطه است، یکی از دو عنصری می‌باشد که در دماهای معمولی اتاق حالت مایع دارند ( فلز دیگر برم است ) و در دماسنجها ، فشارسنجها و سایر وسایل علمی کاربرد دارد. جیوه عمدتا" بوسیله کاهش از ماده معدنی cinnabar ( سولفور جیوه ) بدست می‌آید.

تاریخچــــــــه

جیوه را چینیان و هندیهای باستان شناخته بودند و در گورهای متعلق به 1500سال قبل از میلاد یافت شده‌اند. تا سال 500 قبل از میلاد ، از جیوه به همراه مواد دیگر برای ساخت آمالگامها استفاده می‌شد. یونانیان باستان از این فلز سمی در پمادها و رومیان از آن در لوازم آرایشی استفاده می‌کردند. کیمیاگران تصور می‌کردند تمامی مواد از این ماده ساخته شده‌اند. همچنین می‌پنداشتند در صورتی که جیوه سخت شود، به طلا تبدیل خواهد شد.

در قرن 18 و قرن 19 از نیترات جیوه برای کندن موی حیوانات جهت ساختن کلاههای نمدی استفاده می‌کردند. این مسئله موجب بروز آسیبهای مغزی در بین کلاهدوزان شد که گفته می‌شود عبارت: " دیوانه مثل یک کلاهدوز " و شهرت Mad hatter آلیس در سرزمین عجایب از آنجا آمده است.

کیمیاگران نام خدای رومیان Mercury را برای این عنصر در نظر گرفتند. نماد جیوه Hg ، از واژه hydrargyrum که لاتینی شده کلمه یونانی hydrargyros می‌باشد، برگرفته شده که ریشه‌های یونانی این واژه مرکب به معنی آب و نقره بود. جیوه یکی از معدود عناصری است که دارای یک نماد کیمیاگری است.

پیدایــــــــش

جیوه که عنصری کمیاب در پوسته زمین است، یا در کانی‌های محلی ( کمیاب ) و یا درcinnabar , corderoite , livingstonite و دیگر مواد معدنی یافت می‌شود که cannibar ) HgS ) فراوان‌ترین سنگ معدن جیوه می‌باشد. تقریبـا" 50% جیوه مورد نیاز جهان از اسپانیا و ایتالیا و بیشتر 50% بقیه از یوگوسلاوی ، روسیه و شمال آمریکا تامین می‌شود. این فلز را با روش گرم کردن cannibar در جریان هوا و تغلیظ بخار آن استخراج می‌کنند.

خصوصیات قابل توجه

جیوه ، فلزی سنگین ، نقره‌ای رنگ ، یک ظرفیتی یا دو ظرفیتی است که هادی ضعیفی برای گرما اما هادی مناسبی برای الکتریسیته می‌باشد و تنها فلزی است که در دمای اتاق به حالت مایع است ( مایعی مات و درخشان ). جیوه براحتی و تقریبا" با تمامی فلزات معمولی از جمله طلا و نقره آلیاژ می‌سازد، ( بجز آهن ) که به هر کدام از این آلیاژها ملغمه ( amalgam ) می‌گویند.

نقطه انجماد جیوه 40- درجه سلسیوس معادل 40- درجه فارنهایت می‌باشد. این تنها دمایی است که در هر دو مقیاس برابراست. همچنین این عنصر دارای انبساط حرارتی حجمی ثابتی می‌باشد، واکنش پذیری آن نسبت به
روی و کادمیم کمتراست و جایگزین هیدروژن اسیدها نمی‌شود. حالتهای عادی اکسیداسیون این عنصر عبارتند از: mercurous یا 1+ و mercuric یا 2+. نمونه‌های بسیار نادری هم از ترکیبات جیوه 3+ وجود دارد.

کاربردهــــــا

  • بیشترین کاربرد جیوه در ساخت مواد شیمیایی صنعتی و کاربردهای برقی و الکترونیکی است. علاوه بر این‌ها از جیوه در دماسنجها بخصوص برای حرارتهای بالا مورد استفاده قرار می‌گیرد.
  • چون به‌آسانی با طلا تولید آمالگام می‌کند، برای تهیه طلا از سنگ معدن مورد استفاده قرار می‌گیرد.
  • از جیوه علاوه بر دماسنجها در فشارسنجها ، پمپهای انتشار و بسیاری وسایل آزمایشگاهی دیگراستفاده می‌گردد.
  • نقطه سه گانه جیوه – 8344/38- درجه سانتیگراد – نقطه ثابتی است که بعنوان معیار در مقیاسهای بین‌المللی حرارتی ( ITS-90 ) بکار رفته است.
  • از جیوه گازی در لامپهای بخار جیوه و تابلوهای تبلیغاتی استفاده می‌شود.
  • کاربردهای متنوع جیوه : سویچهای جیوه ای ، حشره کشها ، آمالگامها/ داروهای دندان ، باتریهای جیوه‌ای برای تولید هیدروکسید سدیم و کلر ، الکترود در برخی انواع الکترولیز ، باتریها ( پیلهای جیوه‌ای ) و کاتالیزورها.

ترکیبات

مهمترین نمکهای آن عبارتند از:


  • کلرید جیوه – که بسیار خورنده ، پالایش شده و به‌شدت سمی است.
  • کلرید mercurous – کالومل بوده و هنوز هم گاهی اوقات در پزشکی کاربرد دارد.
  • فولمینات جیوه – یک چاشنی که در مواد انفجاری کاربرد وسیعی دارد.
  • سولفید جیوه که از آن در ساخت شنگرف که رنگدانه مرغوبی برای رنگسازی است، استفاده می‌شود.

ترکیبات آلی جیوه نیز مهم هستند. مطالعات آزمایشگاهی ثابت کرده است که تخلیه الکتریکی موجب می‌شود تا گازهای نجیب نئون ، آرگون ، کریپتون و زنون با بخار جیوه ترکیب گردند. محصولات تولید شده از طریق این ترکیب توســط نیــــرویهـــــای van der waals در کنار هم قرار گرفته و نتیجه آن HgNe , HgKr , HgAr و HgXe است. Methyl mercury ترکیب خطرناکی است که به مقدار فراوان در آبها و جریانات آبی بعنوان عامل آلوده کننده دیده می‌شود.

ایزوتوپهــــــــا

برای جیوه ، هفت ایزوتوپ پایدار وجود دارد که فراوان‌ترین آنها Hg-202 است ( فراوانی طبیعی 86/26% ). پایدارترین ایزوتوپهای پرتوزاد آن Hg-194 با نیم عمر 444 سال و Hg-203 با نیمه عمر 46,612 روز هستند. بیشتر مابقی ایزوتوپهای پرتوزاد آن ، نیمه عمر کمتر از یک روز دارند.

هشدارهـــــــــا

جیوه در هر دو حالت گازی و مایع به‌شدت سمی است. اگر این فلز سنگین و سمی خورده شود، منجر به ضایعات مغزی و کبدی می‌شود. به همین علت ، امروزه در دماسنجهایی که فقط به منظور اندازه گیری درجه حرارت آب و هوا ساخته شده‌اند، از الکل رنگیزه دار استفاده می‌شود؛ نقطه جوش الکل از هر دمای طبیعی در زمین بیشتر است.

هنوز هم در بسیاری از دماسنجهای پزشکی به علت دقت بالای جیوه از این عنصر استفاده می‌گردد. هنگام استفاده از این دماسنجها باید توجه زیادی نمود تا گاز گرفته نشوند. واحد تجاری برای کار با جیوه flask است که وزن آن معادل Ib76 می‌باشد.

جیوه ماده سمی بسیار خطرناکی است که به‌آسانی از طریق بافتهای پوستی ، تنفسی و گوارشی جذب می‌شود. یکی از موارد مسمومیت با جیوه به حساب می‌آید. جیوه ، سیستم عصبی مرکزی را مورد تهاجم قرار داده و تاثیرات بسیار بدی روی دهان ، لثه و دندان می‌گذارد.

تماس با مقدار زیاد جیوه و در مدت طولانی باعث آسیبهای مغزی و در نهایت منجر به مرگ خواهد شد. هوایی که در دمای اتاق با بخار جیوه اشباع شده باشد، به رغم نقطه جوش بالا بسیار سمی است ( خطر در دماهای بالاتر افزایش می‌یابد )؛ بنابراین با این عنصر باید در نهایت دقت رفتار شود. لازم است ظروف جیوه بصورت مطمئن پوشیده شوند تا از سررفتن یا تبخیرآن جلوگیری شود. حرارت دادن جیوه یا ترکیبات آن همیشه باید بوسیله هواکشهای مناسب و قوی انجام شود؛ بعضی اکسیدهای آن می‌توانند به جیوه عنصری تجزیه شوند که سریعا" تبخیر شده و ممکن است دیده نشوند.




داغ کن - کلوب دات کام
لطفا نظر بدهید() 

ساخت آسانسور فضایی روی سطح ماه

تاریخ:چهارشنبه 19 مهر 1391-16:47

چندین دهه است که بحث ساخت یک آسانسور فضایی که بتواند رباتها یا انسانها را از زمین به فضاپرتاب کند مورد بحث قرار دارد اما اخیرا یک شرکت که توسط یکی از محققان سابق ناسا اداره می شود اعلام کرده که می تواند با استفاده از فناوری روز یک آسانسور فضایی روی سطح ماه بسازد.

شرکت LiftPort در نظر دارد با جمع کردن بودجه 8 هزار دلاری با استفاده از سایت جمع کردن بودجه با کمک عمومی نخستین گام خود را در ساخت یک سکوی بالونی متحرک که به زمین بسته می شود تا یک ربات 2 کیلومتر در آسمان بالا برود را اجرایی کند.

جمع کردن این بودجه همچنین مساوی با بازگشت شرکتی است که طی دوره 2007 تا 2012 در نتیجه رکود اقتصادی تعطیل بوده است.

مایکل لین رئیس شرکت LiftPort اظهار داشت: حدود شش ماه قبل ما پیشرفت قابل توجهی داشتیم، پیشرفتی که می تواند تمدن انسان را متحول کند، اکنون ما می خواهیم سایرین هم بخشی از آن باشند.

وی افزود: این پیشرفت شرایطی را برای شرکت ما فراهم کرده تا بتوانیم با استفاده از فناوری کنونی یک آسانسور فضایی روی ماه بسازیم و همچنین با یک راهکار پرتاب واحد موشک به سادگی موشکی شبیه به اسپاتیک در اختیار داشته باشیم. این طرح می تواند ظرف هشت سال به واقعیت تبدیل شود.

یک آسانسور فضایی روی ماه می تواند با دشواری های کمتری نسبت به یک آسانسور فضایی روی زمین ساخته شود چرا که ماه از گرانش کمتری برخوردار است و عملا هیچ اتمسفری ندارد، این عوامل موجب می شود که موادی که برای این پروژه به کار می رود به دقت انتخاب شوند.

لین طی سالهای 2001 تا 2003 با موسسه طرحهای پیشرفته ناسا روی آسانسور فضایی کار می کرد. وی این شرکت خصوصی را در سال 2003 تأسیس کرد و ایده خود را پیش از تعطیل شدن شرکت با رباتهای آزمایش تا ارتفاع 1.6 کیلومتر آزمایش کرده است.

اما ایده سکوهای بالونی برای ماه عملی نیست، این ایده می تواند به عنوان وسیله ارتباطی کم هزینه برای مثال برای ارائه اینترنت WiFi در زمین، نظارت بر برداشت محصولات، مراقبت از عدم وقوع آتش در جنگل یا حتی انتقال دوربین برای وجود یک چشم در آسمان پس از وقوع وقایع طبیعی به کار رود.

این شرکت که تازه به حالت عادی خود بازگشته است یک حد بودجه متوسط در نظر گرفته و هنوز در حال آموزش یک گروه از داوطلبان است. بسیاری از اعضای سابق این شرکت به پروژه های دیگر ملحق شده اند.

این شرکت درنظر دارد این بودجه خود را به سه میلیون دلار برساند تا تسهیلات مطالعه برای پروژه آسانسور فضایی ماه فراهم شود.



نوع مطلب : نجوم(فیزیک) 

داغ کن - کلوب دات کام
لطفا نظر بدهید() 

شیمی فضایی

تاریخ:چهارشنبه 19 مهر 1391-16:37

علم شیمی آلی ، مبتنی بر ارتباط بین ساختار مولکولی و خواص ترکیب است. آن بخشی از این علم که با ساختار در سه بعد می‌پردازد شیمی فضایی ، Stereo Chemistry ، نام دارد (واژه یونانی:Stereos به معنای جامد).

img/daneshnameh_up/5/53/C4-6-A158.JPG

ایزومری فضایی

یک بخش از شیمی فضایی ، ایزومری فضایی است. ایزومرها ترکیبات متفاوتی هستند که فرمول مولکولی یکسانی دارند. ایزومرهای خاصی که فقط از نظر جهت گیری اتمها در فضا باهم تفاوت دارند اما از نظر نحوه اتصال اتمها به یکدیگر ، شبیه یکدیگرند، ایزومرهای فضایی نام دارند.

شباهت و تفاوت ایزومرهای فضایی

تفاوت جفت ایزومرهای فضایی از نظر ساختار و بنابراین از نظر خواص بسیار کوچک است. اما از نظر همه خواص فیزیکی قابل سنجش ، با یکدیگر مشابهند مگر از نظر تاثیر بر نوعی نور غیر عادی. با استفاده از همین تاثیر متفاوت و دستگاه خاص مربوطه می‌توان دو ایزومر را از یکدیگر باز شناخت.

کاربرد متفاوت ایزومرهای فضایی

با وجود شباهت نزدیک ، وجود اینگونه ایزومرها ، یکی از سنجشگرهای بسیار حساس را برای تشخیص مکانیسم واکنشها در اختیار شیمیدان می‌گذارد. غالبا یکی از این ایزومرها برای مطالعه برگزیده می‌شود. نه به این دلیل که این ایزومرها از نظر شیمی سه بعدی‌اش با ترکیبهای دیگر فرق دارد، بلکه به این دلیل که این ترکیب می‌تواند نکته‌هایی را آشکار سازد که در ترکیبهای عادی پنهان‌اند و باز هم با وجود شباهت نزدیک دو ایزومر فضایی ، ممکن است یکی از آنها یک غذای مقوی یا یک آنتی بیوتیک یا یک داروی محرک قلب باشد، ولی ایزومر دیگر ترکیبی بی‌مصرف باشد.

تعداد ایزورمها و کربن چهار وجهی

باید در نظر داشت که هر ترکیبی ولو پیچیده که دارای کربنی متصل به چهار اتم دیگر است را می‌توان مشتقی از متان تلقی کرد و آنچه که درباره شکل مولکول متان فرا می‌گیریم را می‌توانیم درباره شکل مولکولهای پیچیده بکار بریم. برای هر اتم ، فقط یک ماده با فرمول یافت شده است. با کلردار کردن متان ، فقط یک ترکیب با فرمول و با برم‌دار کردن آن فقط یک ترکیب با فرمول بدست می‌آید. به همین ترتیب فقط یک و یک شناخته شده است.

در واقع ، اگر ، بجای اتم نمایاننده یک گروه از اتمها باشد نیز مطلب فوق صادق است، مگر هنگامی که گروه تا آن حد پیچیده است که خود سبب ایزومری می‌شود. به عنوان مثال فقط یک ، یک و یک وجود دارد. این نشان می‌دهد که در متان ، همه
اتمهای هیدروژن هم ارزند، بطوری که با جایگزین کردن هر کدام از آنها ، فرآورده یکسانی حاصل می‌شود. اگر اتمهای هیدروژن متان هم ارز نبودند، با جایگزین کردن هر کدام از آنها ترکیب متفاوتی بدست می‌آمد و فرآورده‌های استخلافی ایزومری حاصل می‌شدند.

برای اتمهای هیدروژن در متان سه آرایش امکان پذیر است که هم ارز باشند:


  1. آرایش مسطح که در آن اتم کربن در مرکز یک مستطیل یا مربع و اتمهای هیدروژن در چهار گوشه آن قرار دارند.

  2. آرایش هرمی که در آن اتم کربن در راس هرم و اتمهای هیدروژن در چهار گوشه آن قرار دارند.

  3. آرایش چهار وجهی که در آن کربن در مرکز چهار وجهی و هر اتم هیدروژن در یک گوشه آن است.

فعالیت نوری

نور خواصی دارد که با در نظر گرفتن آن به عنوان یک پدیده موجی بخوبی درک می‌شوند. موجی که در آن ارتعاشها بصورت عمود بر جهت حرکت نور روی می‌دهند. تعداد سطحهایی که از خط مسیر نور می‌گذرند بی‌شمارند و نور معمولی در همه این سطوح در حال ارتعاش است. اگر مستقیما به باریکه‌ای از نور یک لامپ بنگریم، نوع ارتعاشهایی که روی می‌دهند و همگی عمود بر خط بین چشمان ما و منبع نور (لامپ) هستند را نشان می‌دهد.

نور معمولی ، با عبور کردن از یک
عدسی ساخته شده از ماده‌ای به نام "پلاروید" یا از یک قطعه کلسیت (نوعی بلور ) با آرایشی که به نام منشور نیکول معروف است، به نور قطبیده در سطح تبدیل می‌شود. یک ماده فعال نوری ، ماده‌ای است که سطح نور قطبیده را می‌چرخاند. وقتی نور قطبیده در حال ارتعاش در یک سطح معین ، از میان یک ماده فعال نوری می‌گذرد، در حال ارتعاش در یک سطح دیگر پدیدار می‌شود.

پلاریمتر

چگونه می‌توان این چرخش سطح نور قطبیده یعنی این فعالیت نوری را تشخیص داد؟ این پدیده را با استفاده از دستگاهی به نام پلاریتمر می‌توانیم تشخیص دهیم و اندازه گیری کنیم. ما نه تنها می‌توانیم چرخیدن سطح و نیز جهت آن را تشخیص دهیم، بلکه مقدار این چرخش را هم می‌توانیم تعیین کنیم.

چرخش ویژه

از آنجا که چرخش نوری مورد توجه ما از مولکولهای مجزای ترکیبهای فعال ناشی می‌شود، مقدار چرخش به تعداد مولکولهای موجود در لوله که نور به آنها برخورد می‌کند، بستگی دارد. در مقایسه با یک لوله 10 سانتیمتری ، در لوله 20 سانتیمتری امکان برخورد نور با مولکولها دو برابر است و در نتیجه چرخش نیز دو برابر است. اگر ترکیب فعال بصورت محلول باشد، تعداد مولکولهای برخورد کننده با نور ، به غلظت محلول بستگی خواهد داشت.

در لوله‌ای بطور ثابت ، در مقایسه با محلولی با غلظت یک گرم در 100ml حلال ، در غلظت دو گرم در 100ml ، تعداد برخورد بین مولکولها و نور دو برابر است و در نتیجه مقدار چرخش نیز دو برابر است. با روشن شدن اثر طول لوله و غلظت بر چرخش ، معلوم می شود که مقدار چرخش و نیز جهت آن ، یک خصلت مشخصه هر ترکیب فعال نوری است. چرخش ویژه یعنی تعداد درجه‌های چرخش مشاهده شده در صورتی که لوله‌ای بطول یک دسی‌متر ، 10 سانتیمتر مورد استفاده قرار گیرد و غلظت نمونه 1 باشد.

معمولا این چرخش ، با استفاده از لوله‌هایی با طولهای مختلف و غلظتهای متفاوت از رابطه زیر محاسبه می‌شود.


(X = α/(1Xd


(gr/ml) طول (dm)/چرخش مشاهده شده (درجه) = چرخش ویژه

در این رابطه ، d نمایاننده چگالی یک مایع خالص یا غلظت یک محلول است.

چرخش ویژه نیز همانند
دمای ذوب ، دمای جوش ، چگالی ، ضریب شکست و... یکی از خواص یک ترکیب است. به عنوان مثال ، چرخش ویژه 2- متیل -1- بوتانول بدست آمده از روغن فوزل چنین است.



انانتیومر

ایزومرهایی که تصویر آینه‌ای یکدیگرند را انانتیومر می گویند. دو اسید لاکتیک متفاوتی که مدلهای فضایی متفاوتی دارند و ایزومر فضایی هستند، انانتیومر هستند (در زبان یونانی: enantio به معنای مخالف). دو ، 2- متیل -1- بوتانول ، دو ، Sec - بوتیل کلرید و غیره نیز انانتیومر هستند. انانتیومرها خواص فیزکی مشابهی دارند، مگر از نظر جهت چرخاندن سطح نور قطبیده.

به عنوان مثال ، دو ، 2- متیل -1- بوتانول دارای دمای ذوب ، دمای جوش ، چگالی ، ضریب شکست و خواص فیزیکی دیگر یکسانند و تنها تفاوت آنها این است که نور قطبیده در سطح را یکی به راست و دیگری به چپ می چرخاند. این واقعیت تعجب برانگیز نیست. چون برهمکنشهای دو نوع مولکول با دوستانشان باید یکسان باشد. فقط جهت چرخش متفاوت است. مقدار چرخش یکی است. انانتیومرها خواص مشابهی دارند مگر از نظر واکنش با واکنشگرهای فعال نوری.

کایرالیته

مولکولهایی که بر تصویر آیینه‌ای خود قابل انطباق نیستند، کایرال هستند. کایرالیته ، شرط لازم و کافی برای موجودیت انانتیومرهاست. مثل این است که بگوییم: ترکیبی که مولکولهایش کایرال هستند، می‌توانند بصورت انانتیومرها وجود داشته باشند. ترکیبی که مولکولهایش ناکایرال هستند (فاقد کایرالیته) ، نمی‌توانند بصورت انانتیومرها وجود داشته باشند.

مخلوط راسمیک

مخلوطی از انانتیومرها به مقدار مساوی را مخلوط راسمیک می‌گویند. یک مخلوط راسمیک از نظر نوری غیرفعال است. هنگامی که دو انانتیومر باهم مخلوط می‌شوند، چرخش ایجاد شده توسط یک مولکول ، دقیقا با چرخش مخالف ایجاد شده توسط مولکول انانتیومر خود خنثی می‌شود. پیشوند برای مشخص کردن ماهیت راسمیک یک نمونه خاص بکار می‌رود، مانند (±) - لاکتیک اسید یا ± -2- متیل -1- بوتانول.

خوب است مخلوط راسمیک را با ترکیبی مقایسه کنیم که مولکولهایش به تصویر آینه‌ای خود قابل انطباق هستند. یعنی ترکیب ناکایرال. هر دو ، دقیقا به دلیل یکسانی غیر فعال نوری هستند. به علت توزیع تصادفی تعداد زیادی مولکول ، به ازای هر مولکولی که با نور برخورد می‌کند، مولکول دومی وجود دارد که تصویر آیینه‌ای آن است و دقیقا طوری جهت گیری کرده است که اثر مولکول اول خنثی کند. در یک مخلوط راسمیک ، مولکول دوم ایزومر مولکول اول ایزومر مولکول اول است. در یک ترکیب ناکایرال ، مولکول دوم ایزومر مولکول اول نیست، بلکه مولکول دیگری همانند مولکول اول است.




داغ کن - کلوب دات کام
لطفا نظر بدهید() 

الکترولیز

تاریخ:چهارشنبه 19 مهر 1391-16:18


تصویر

دید کلی

رسانایی الکترولیتی هنگامی صورت می‌گیرد که یونهای الکترولیت بتوانند آزادانه حرکت کنند، چون در این مورد ، یونها هستند که بار الکتریکی را حمل می‌کنند. به همین دلیل است که رسانش الکترولیتی ، اساسا توسط نمکهای مذاب و محلولهای آبی الکترولیتها صورت می‌گیرد. علاوه بر این ، برای تداوم جریان در یک رسانای الکترولیتی ، لازم است که حرکت یونها با تغییر شیمیایی همراه باشد.

اصول رسانش الکترولیتی

این اصول رسانش الکترولیتی با بررسی الکترولیز NaCl مذاب بین الکترودهای بی‌اثر بهتر متصور می‌گردد. منبع جریان ، الکترونها را به الکترود سمت چپ می‌راند. بنابراین ، می‌توان گفت که این الکترود ، بار منفی پیدا می‌کند. این الکترونها ، از الکترود مثبت سمت راست کشیده می‌شوند. در میدان الکتریکی که بدین ترتیب بوجود می‌آید، یونهای سدیم ( کاتیونها ) به طرف قطب منفی ( کاتد ) و یونهای کلرید ( آنیونها ) به طرف قطب مثبت ( آند ) جذب می‌شوند.

در رسانش الکترولیتی ، بار الکتریکی بوسیله کاتیونها که به طرف کاتد و بوسیله آنیونها که در جهت عکس ، به طرف آند حرکت می‌کنند، حمل می‌شود. برای آنکه یک مدار کامل تشکیل شود، حرکت یونها باید با واکنشهای الکترودی همراه باشد. در کاتد ، اجزای شیمیایی معینی ( که لازم نیست حتما حامل بار باشند ) باید الکترونها را بپذیرند و کاهیده شوند و در آند ، الکترونها باید از اجزای شیمیایی معینی جدا شده ، در نتیجه آن اجزا
اکسید شوند.

یونهای سدیم در کاتد کاهیده می‌شوند:


Na+ + e→Na

یونهای کلرید در آند ، اکسید می‌شوند:


2Cl-→Cl2 + 2e

از جمع این دو معادله جزئی ، واکنش کلی سلول بدست می‌آید:


(2NaCl(l)→2Na(l) + Cl2(g

مسیر جریان الکترونها در الکترولیز

الکترونها از منبع جریان خارج شده ، به طرف کاتد روانه می‌شوند. در آنجا یونهای سدیمی که به طرف این الکترود منفی جذب شده‌اند، الکترونها را می‌گیرند و کاهیده می‌شوند. یونهای کلرید از کاتد دور و به آند کشیده می‌شوند و در نتیجه ، بار منفی را در این جهت حمل می‌کنند. در آند ، الکترونها از یونهای کلرید جدا شده ، بوسیله منبع جریان به طرف خارج سلول رانده می‌شوند، بدین طریق ، مدار کامل می‌شود. البته ، یونهای کلرید با از دست دادن الکترون اکسید شده ، به‌صورت گاز کلر درمی‌آیند.

عوامل موثر بر رسانش الکترولیتی

از آنچه گفته شد، مشخص می‌شود که رسانش الکترولیتی به تحرک یونها مربوطه می‌شود و هر چیز که این یونها را از حرکت باز دارد، موجب ایجاد مقاومت در برابر جریان می‌شود. عواملی که بر رسانش الکترولیتی محلولهای الکترولیت اثر دارند، عبارتند از: جاذبه‌های بین یونی ، حلالپوشی یونها و گرانروی حلال. این عوامل به‌ترتیب به جاذبه‌های بین ذرات ماده حل شده ، جاذبه‌های بین ذرات حلال و ماده حل شده و جاذبه‌های بین ذرات حلال مربوط می‌شوند.

انرژی جنبشی متوسط یونهای ماده حل شده با افزایش
دما زیاد می‌شود. و بنابراین ، مقاومت رساناهای الکترولیتی به‌طور کلی با افزایش دما کاهش می‌یابد (یعنی رسانایی زیاد می‌شود). به‌علاوه ، اثر هر یک از سه عامل مذکور با زیاد شدن دما ، کم می‌شود.

باید توجه داشته باشیم که در هر زمان ، تمام قسمتهای محلول الکترولیت از نظر خنثی می‌ماند، زیرا بار مثبت کلی همه کاتیونها برابر با بار منفی همه آنیونها است.

تصویر

استوکیومتری الکترولیز

روابط کمی میان الکتریسیته و تغییر شیمیایی برای نخستین بار در سالهای 1832 و 1833 بوسیله "مایکل فارادی" بیان شد. برای درک کار فارادی ، بهترین راه مراجعه به نیم واکنشهایی است که به هنگام عمل الکترولیز صورت می‌گیرد. به هنگام الکترولیز سدیم کلرید مذاب ، تغییر در کاتد:


Na+ + e→Na

نشان می‌دهد که برای تولید یک اتم سدیم ، یک الکترون لازم است. پس برای تولید یک مول سدیم فلزی ( 22.9898g Na ) ، یک مول الکترون ( عدد آووگادرو الکترون ) لازم است. مقدار بار معادل با یک مول الکترون ، فارادی (F) نامیده می‌شود. یک فارادی برابر با 96485 کولن است که برای مسائل معمولی ، آن را گرد کرده، برابر با 96500C در نظر می‌گیریم:


1F=96500C

اگر 2F الکتریسیته مصرف شود، 2 مول Na تولید می‌شود. در همان زمان که عده الکترونهایی معادل 1F الکتریسیته به کاتد اضافه شود، همان عده الکترون از آند جدا می‌شود:


2Cl→Cl2(g) + 2e

نتیجه جدا شدن 1mol الکترون (1F) از آند ، تخلیه بار یک مول یون -Cl و تولید 0.5mol گاز کلر است. اگر 2F الکتریسیته در سلول جریان یابد، 2 مول یون تخلیه می‌شود و 1mol گاز Cl2 آزاد می‌شود. بنابراین واکنشهای الکترودی را می‌توان بر حسب مول و فارادی تفسیر کرد. مثلا ، اکسایش آندی یون هیدروکسید:


4OH-→O2(g) + 2H2O + 4e

را می‌توان این طور بیان کرد که وقتی 4F الکتریسیته از سلول می‌گذرد، 4 مول یون -OH ، یک مول گاز O2 و دو مول H2O تولید می‌کند. روابط میان مولهای ماده و فارادی های الکتریسیته ، مبنای محاسبات استوکیومتری مربوط به الکترولیز است. به خاطر داشته باشید که یک آمپر (1A) برابر آهنگ جریان یک کولن (1C) در ثانیه است.



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

لامپ اشعه ایکس

تاریخ:چهارشنبه 19 مهر 1391-16:10

ساختمان لامپ اشعه ایکس

پرتوهای ایکس را بوسیله بمباران هدفی فلزی با باریکه‌ای از الکترونهای سریع تولید می‌کنند. قطعات اصلی لامپ اشعه ایکس شامل کاتد برای گسیل الکترونها و آندی در نقش هدف می‌باشند، که هر دو درون لامپ خلا جای گرفته‌اند. کاتد پیچه‌ای رشته‌ای از جنس تنگستن است، این لامپ یک پیچه کانونی جهت جمع کنندگی باریکه الکترونی نیز دارد و در ساختمان آن از پمپ تخلیه نیز استفاده می‌کنند.



img/daneshnameh_up/b/bd/Xray.jpg

نحوه عمل لامپ اشعه ایکس

  • جریان الکتریکی با ولتاژ کم از میان رشته کاتد برای گرم کردن آن و التهاب و تحریک گسیل گرما یونی الکترونها می گذرد. اختلاف پتاسیل الکتریکی زیادی (ولتاژ لامپ) بین کاتد و هدف آندی ، برای شتاب دهی الکترونها در فاصله فضایی بین آن دو وجود دارد. معمولا گستره ولتاژی لامپ اشعه ایکس بین kv50 تا Mv1 است.

  • فنجانک متمرکز کننده‌ای یا پیچه کانونی را نزدیک کاتد قرار می‌دهند که این پیچه به عنوان عدسی الکترومغناطیسی برای متمرکز کردن گسیل گرما یویی به صورت باریکه‌ای که به مرکز هدف آندی هدف گیری شده است، عمل می‌کند. آند از قطعه کوچکی از فلز هدف تشکیل شده است که معمولا از جنس تنگستن است و در پوشش مسی جای گرفته است.

  • تنگستن را به عنوان ماده هدف بکار می‌برند، زیرا گسیل کننده بسیار مؤثر پرتوهای ایکس است و نقطه ذوب فوق العاده بالایی (3380 درجه سانتیگراد) دارد. از این رو دماهای بسیار بالایی را که بوسیله برخورد الکترونهای سریع ایجاد می‌شود، می‌تواند تحمل کند. قطعه تنگستن را درون مکعبی مسی که با آب یا روغن خنک می‌شود جای می‌دهند. بدین ترتیب انرژی گرمایی تولید شده را با رسانش از طریق مس می‌توانند به آسانی از بین ببرند.



img/daneshnameh_up/1/17/ph8.jpg

کپسول لامپ اشعه ایکس

  • کپسول لامپ اشعه ایکس را ممکن است از شیشه ، ماده سرامیکی همچون آلومینا ، فلز یا ترکیبی از مواد بسازند. بیشتر لامپهای اشعه ایکس که امروزه ساخته می‌شوند، ساختمانی از جنس سرامیک _ فلز دارند، که آنها را در مقایسه با لامپهای شیشه‌ای_ فلزی برای هر ولتاژ بخصوصی می‌توان کوچکتر ساخت.

  • کپسول لامپ باید استحکام ساختمانی خوبی در دماهای بالا داشته باشد، تا اثرهای ترکیبی گرمای تابیده از آند و نیروهای اعمالی به محفظه خلا بوسیله فشار اتمسفر را بتواند تحمل کند. شکل کپسول ممکن است با میزان ولتاژ لامپ و ماهیت طرح آند و کاتد تغییر کند.

  • کپسول باید دارای دریچه‌ای در مقابل آند برای امکان خروج باریکه اشعه ایکس از لامپ باشد. این دریچه از عنصری با عدد اتمی پایین برای حداقل جذب اشعه ایکس ساخته شده است. معمولا دریچه را از بریلیوم به ضخامت 3 تا 4 میلیمتر می‌سازند.

  • اتصالات الکتریکی آند و کاتد به دیواره‌های کپسول جوش داده می‌شود. لامپ پرتو درون محفظه‌ای فلزی قرار دارد که برای محافظت در مقابل شوک الکتریکی با ولتاژ بالا کاملا عایق بندی شده است و معمولا این محفظه پریز و دوشاخه ولتاژ قوی دارد که امکان قطع سریع کابلهای الکتریکی اتصال دهنده لامپ به ژنراتور فشار قوی را بوجود می‌آورد.

طراحی لامپ اشعه ایکس

  • دستگاههای قابل حمل اشعه ایکس که در کارگاهها بکار می‌روند، معمولا همه چیز سر خود دارند و مجهز به ژنراتور فشار قوی و لامپ اشعه ایکس هستند که درون یک محفظه قرار دارند. در این حالت هیچ کابل فشار قوی در خارج از محفظه وجود ندارد. جریان الکتریکی حاصل از ولتاژ ضعیف از میان رشته کاتد می‌گذرد و با گرم کردن آن ابر الکترونی در پیرامون رشته با گسیل گرما یونی بوجود می‌آید.

  • هنگامی که ولتاژ قوی در میان لامپ در بین کاتد و آند اعمال می شود، الکترونها در عرض فضای تخلیه شده برای برخورد به هدف شتاب می‌گیرند. باریکه الکترونی طوری متمرکز می‌شود که تنها به سطح کوچکی از هدف برخورد می‌کند، که این سطح کوچک را نقطه کانونی می‌نامند. بیشتر انرژی باریکه الکترونی به انرژی گرمایی که ناگزیر از بین می‌رود، تبدیل می‌شود و مقداری از آن به اشعه ایکس تبدیل می‌شود.

  • هر چقدر نقطه کانونی روی هدف کوچکتر باشد، تصویر پرتو نگاری بدست آمده روشنتر خواهد بود. در هر حال آن مقدار از گرمایش آندی که بوجود می‌آید مانع استفاده از نقطه کانونی بسیار کوچک خواهد شد. طراحی آند و هدف بر مبنای شرایط بهینه‌ای از عمر طولانی هدف و پرتو نگاری بیشینه صورت می‌گیرد.

  • در بسیاری از طراحیهای لامپ اشعه ایکس صفحه آند را نسبت به باریکه الکترون شیبدار می‌سازند. باریکه الکترونی طوری متمرکز می‌شود که نقطه کانونی مربع کوچکی بر روی صفحه عمود بر باریکه الکترونی بوجود می‌آورد. درحالی که این نقطه کانونی به صورت دراز و باریک بر روی صفحه شیبدار هدف بوجود می‌آید.

پارامترهای فیزیکی کنترل کننده باریکه

متغیرهای مهم لامپ اشعه ایکس که مکانیزم عمل و کنترل باریکه حاصل را سبب می‌شوند، عبارتند از:


  • جریان الکتریکی رشته: تغییر در جریان رشته سبب تغییر در دمای رشته می‌شود و تغییر در آهنگ گسیل گرما یونی الکترونها را به دنبال دارد.

  • ولتاژ لامپ: افزایش در ولتاژ لوله و اختلاف پتاسیل الکتریکی بین کاتد و آند ، انرژی باریکه الکترونی و در نتیجه انرژی و توان نفوذ اشعه ایکس تولید شده را افزایش خواهد داد.

  • جریان الکتریکی لامپ: جریان لامپ برابر مقدار شارش الکترونی بین کاتد و آند است و مستقیماً به دمای رشته مربوط می‌شود (از جریان لامپ معمولا به عنوان میلی آمپراژ لامپ یاد می‌کنند). شدت باریکه اشعه تولید شده بوسیله لامپ تقریبا متناسب با میلی آمپراژ لامپ است.



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

تداخل امواج

تاریخ:چهارشنبه 19 مهر 1391-16:01


برهمنهی اثرهای فیزیکی دو یا چند قطار موج را تداخل می‌‌گویند. به عنوان مثال ، هرگاه دو موج با فرکانس و دامنه یکسان باهم ترکیب شوند، اثرات بسیار جالبی ظاهر می‌‌شوند. کلیه این پدیده‌ها در مبحث تداخل مورد بحث قرار می‌‌گیرند.




تصویر

اطلاعات اولیه

دو سیم کوچک را به تیغه مرتعش طوری محکم می‌‌کنیم که وقتی در فاصله‌ای از سطح آب به تیغه فشار می‌‌آوریم، هر دو بطور هم زمان به سطح آب بخورند. در این صورت دو موج دایره‌ای با طول موج یکسان بدست می‌‌آید که از دو مرکز منتشر می‌‌شوند و در تشتک آب باهم ترکیب می‌‌شوند. ناحیه‌هایی در روی سطح آب بوجود می‌‌آید که در آن ارتعاشها قوی هستند و در نواحی دیگر ارتعاشها از بین می‌‌روند. چنین نواحی متناوب را نقش تداخلی گفته و پدیده برهمنهی امواج را که منجر به چنین نقشی می‌‌شود، تداخل می‌‌گویند.

تشریح تداخل با استفاده از روابط ریاضی

دو موج با دامنه و فرکانس یکسان در نظر بگیرید که هر دو با سرعت یکسان در جهت مثبت محور xها حرکت می‌‌کنند و بین آنها اختلاف فازی به اندازه Ф وجود دارد. معادلات این دو موج را می‌‌توان بصورت زیر نوشت:


(y1 = ym Sin (kx - ωt

(y2 = ym Sin (kx - ωt - Ф

در روابط فوق k عدد موج ، ω فرکانس زاویه‌ای ، ym دامنه و Ф اختلاف فاز بین دو موج است. حال اگر این دو موج باهم ترکیب شوند، موج برآیند با فرض برقرار بودن اصل برهمنهش به صورت زیر خواهد بود:


{y = y1 + y2 = ym{sin (kx - ωt - Ф) + sin (kx - ωt

این موج برآیند ، موج جدیدی است که همان فرکانس دو موج اولیه را دارد، ولی دامنه‌اش برابر:


ym cos Ф/2

است.

تداخل سازنده و ویرانگر

اگر Ф یعنی اختلاف فاز بین دو موج اولیه ، صفر باشد، در این صورت دو موج در همه جا همفاز هستند، یعنی بالاترین و پائین‌ترین نقاط دو موج بر هم منطبق هستند. در این حالت اصطلاحا گفته می‌‌شود که امواج بطور سازنده باهم تداخل کرده‌اند. در این حالت دامنه موج برآیند بیشترین مقدار ، یعنی دو برابر دامنه هر یک از امواج اولیه به تنهایی است. از طرف دیگر ، اگر Ф = 0 باشد، در این صورت دامنه موج برآیند صفر خواهد بود. در این حالت بالاترین نقطه یک موج دقیقا بر پائین‌ترین نقطه موج دیگر منطبق می‌‌شود و اصطلاحا گفته می‌‌شود که تداخل ویرانگر اتفاق افتاده است.

شرط ایجاد تداخل پایدار

اگر بطور اختیاری فاز یکی از چشمه‌ها را تغییر دهیم، در این صورت در هر نقطه دو ارتعاش به تناوب یکسان و متفاوت می‌‌شوند و محل ماکزیممها (نقاط تداخل سازنده) ثابت نمی‌‌ماند. همچنین اگر دوره تناوب دو موج مختلف باشد، در هر نقطه سطح تقویت ارتعاشها به تضعیف تبدیل و سپس ارتعاشها دوباره تقویت می‌‌شوند و همین طور تا آخر ادامه پیدا می‌‌کند. هر قدر اختلاف دوره تناوب بیشتر و یا آهنگ تغییر فاز یکی از ارتعاشها زیادتر باشد، ماکزیممها محلشان را سریعتر تغییر می‌‌دهند.

وقتی از نقش تداخلی صحبت می‌‌کنیم، منظور نقشی یک در میان از ماکزیممها و مینیممهای پایدار و مستقل از زمان است. این نقش پایدار فقط وقتی ظاهر می‌‌شود که امواج بر هم نهاده شده ، دارای دوره تناوب یکسان بوده و در هر نقطه ثابت اختلاف ثابت باشد. این قبیل امواج را امواج همدوس می‌‌گویند. در نتیجه تداخل پایدار فقط به شرطی مشاهده می‌‌شود که امواج همدوس باشند.

شرایط عملی تداخل

در عمل اثرهای تداخلی از قطار موجهایی حاصل می‌‌شوند که از یک چشمه (یا از چشمه‌هایی که بین فازهای آنها رابطه ثابتی وجود دارد) بیرون می‌‌آیند، ولی تا نقطه تداخل ، مسیرهای متفاوتی را می‌‌پیمایند. اختلاف فاز Ф بین امواجی را که به یک نقطه می‌‌رسند، می‌‌توان با تعیین اختلاف مسیرهایی که این موجها از چشمه تا نقطه تداخل می‌‌پیمایند، محاسبه کرد. هرگاه اختلاف مسیر مضرب درستی از طول موج (به صورت nλ که n عدد طبیعی است) باشد، دو موج بطور سازنده باهم تداخل می‌‌کنند، ولی اگر اختلاف مسیر مضرب کسری از طول موج λ باشد (مثل {λ/2 ، λ/3 و غیره)، در این صورت امواج بطور ویرانگر با هم تداخل می‌‌کنند.

به بیان دیگر ، می‌‌توان گفت که ماکزیممهای نقش تداخلی ایجاد شده توسط دو چشمه‌ای که بطور همفاز ارتعاش می‌‌کنند، در نقاطی مشاهده می‌‌شوند که اختلاف راه برابر با مقدار صحیحی از طول موج (یا به عبارت دیگر مقدار زوجی از نصف طول موج) باشد و مینیممها در نقاطی قرار می‌‌گیرند که در آنها اختلاف راه برابر مقدار فردی از نصف طول موج باشد. اگر دو موج ناهمدوس بر هم‌ نهاده شوند، شدت‌ها فقط به هم افزوده می‌‌شوند، بطوری که افزوده شدن موج دوم در هر نقطه منجر به افزایش شدت موج به مقداری برابر با شدت موج دوم می‌‌شود. بنابراین ماکزیمم یا مینیممی مشاهده نمی‌‌شود.

تداخل امواج صوتی

پدیده تداخل نیز ، مانند پراش ، در هر پدیده موجی ، بدون توجه به طبیعت امواج ، مشاهده می‌‌شود. قواعد مربوط به امواج صوتی نیز به همان صورتی است که قبلا اشاره شد. فرض کنید دو دیاپازون یکسان که صدای آنها همنوا است، روی یک تخته که بتواند حول یک محوری بچرخد، محکم شده است. اگر دیاپازونها به ارتعاش در آیند (مثلا با آرشه ویولن) و تخته به آرامی گردانده شود، نواحی صدای تقویت شده و تضعیف شده نسبت به ناظر حرکت خواهند کرد و ناظر متناوبا صدای بلند و صدای بسیار ضعیف خواهند شنید.

البته این مسئله را در زندگی روزمره خود بارها مشاهده می‌‌کنیم. به عنوان مثال ، اگر ظهر بلندگوهای یک مسجد در حال پخش اذان باشند و ما در طول یک مسیر پیاده راه برویم، ملاحظه می‌‌کنیم که در بعضی از نقاط صدا را به وضوح می‌‌شنویم، ولی در بعضی از نقاط ، صدای ضعیفی شنیده می‌‌شود.



img/daneshnameh_up/c/c6/B1000.gif

تداخل امواج نوری

آزمایشهای بسیاری برای نشان دادن تداخل در مورد امواج نوری انجام شده است که از جمله می‌‌توان به آزمایش دو شکاف یانگ اشاره کرد. به عنوان مثال ، فرض کنید که از یک چشمه نوری ، امواج نورانی بر روی صفحه‌ای که دو سوراخ سیاه بسیار کوچک روی آن قرار دارد که اندازه آنها قابل مقایسه با طول موج چشمه نور است، می‌تابد. در این صورت پرتوهای نوری بعد از خروج از دو شکاف با هم تداخل می‌‌کنند. اگر در فاصله معینی از صفحه ، یک پرده قرار دهیم، نقشهای تداخلی به صورت نقاط تاریک و روشن در روی پرده ظاهر می‌‌شوند. نقاط روشن ، نشان دهنده تداخل سازنده هستند و نقاط تاریک ، تداخل ویرانگر را نشان می‌‌دهند.



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

اختراع رادیو

تاریخ:چهارشنبه 19 مهر 1391-15:49

دید کلی

نظریه ماکسول با آزمایشهایی با امواج الکترومغناطیسی تایید شدند و آزمایشهای هرتز خیلی زود برای تمام دانشمندان سراسر جهان شناخته شدند. و بدین ترتیب اندیشه استفاده از امواج الکترومغناطیسی برای مخابرات و حتی برای انتقال بی سیم ، انرژی پدیدار شد.

تاریخچه

پوپوف فیزیکدان و مهندس برق با تکرار آزمایشات هرتز طرح سوار کردن را بهبود بخشید. و در خلال سال 1889 توانست در تشدید کننده‌های گیرنده حرفه‌هایی را بوجود آورد که در سالن بزرگ و بدون تاریک کردن ، مرئی باشد. بزودی او متوجه شد که برای استفاده علمی از امواج الکترومغناطیسی ، اول از همه گیرنده حساس و مناسبی مورد نیاز است.



تصویر




پوپوف در 7 مه 1895 طرز کار گیرنده‌‌اش را در انجمن فیزیک و شیمی روسیه نمایش داد و این روز به راستی باید روز تولد رادیو در نظر گرفته شود. چنین گیرنده‌ای در سال 1894 توسط پوپوف طرح شد. که اجزای اصلی دستگاه او را در وسیله گیرنده امروزی می‌توان یافت.

گیرنده پوپوف

ویژگیهای اصلی اولین گیرنده پوپوف چه بود و اساس کار آن چیست؟ پوپوف برای بهتر شدن حساسیت گیرنده از پدیده تشدید استفاده کرد. مزیت دوم اختراع پوپوف در آرایه آنتن گیرنده بسیار خوبی بود که گستره دریافت امواج را به مقدار خیلی زیادی افزایش داد و هنوز هم در ایستگاههای دریافت موج رادیویی بکار می‌روند. ویژگیهای ممتاز در گیرنده پوپوف در روش ثبت فیزیک امواج است. برای این منظور پوپوف بجای جرقه وسیله خارجی را بکار برد، یعنی موج یابی را که به تازگی توسط برنلی اختراع شده بود، در تجارب آزمایشگاهی بکار گرفت.

ساختمان موج یاب

براده‌های ظریف آهن در یک لوله شیشه‌ای قرار داده می‌شوند دو سیم به دو انتهای شیشه محکم شده‌اند، بطوری که با براده‌ها تماس دارند. در شرایط عادی مقاومت الکتریکی بین براده‌های مجزا نسبتا زیاد است، بطوری که کل موج یاب مقاومت بالایی دارد. موج الکترومغناطیسی جریان متناوب با فرکانس بالا در مدار موج یاب ایجاد می‌کند و جریان مخصوص بین براده‌ها باعث می‌شود که آنها به هم جوش بخورند. در نتیجه مقاومت موج یاب ناگهان افت می‌کند.

برای افزایش مقاومت موج یاب تا مقدار اولیه و حساس کردن دوباره آن به امواج الکترومغناطیسی باید آنرا تکان داد. پوپوف موج یابی را در مداری شامل باتری و یک رله تلگراف قرار داد. قبل از وارد شدن موج الکترومغناطیسی مقاومت موج یاب زیاد است و جریان جاری از آن و رله ضعیف است و آرمیچر جذب آهنربای الکتریکی پایینی نمی‌شود.

وقتی که موج الکترومغناطیسی ظاهر شد، مقاومت امواج موج یاب افت می‌کند، جریان الکتریکی به تندی فردی می‌یابد و رله آرمیچر جذب آهنربای الکتریکی می‌شود. بنابراین اتصال رله آهنربای پایینی که یک زنگ الکتریکی معمولی را به باطری وصل می‌کند، برقرار می‌شود. چکش به زنگ می‌خورد یا سوراخی بر نوار کاغذی متحرک ثبت می‌کند و به این ترتیب ورود موج خبر داده می‌شود. در حرکت به عقب چکش به موج یاب می‌خورد و در نتیجه حساسیت آن برقرار می‌ماند. به این ترتیب پوپوف به اصطلاح رله مدار اتصال را تحقق بخشید.



تصویر
موج رادیویی FM




گیرنده رادیویی

انرژی خیلی کم امواج ورودی بطور مستقیم برای دریافت (مثلا برای هر جرقه) بکار نمی‌رود، بلکه برای کنترل چشمه انرژی‌ که وسیله ثبت کننده را تغذیه می‌کنند، بکار گرفته می‌شوند. در گیرنده‌های رادیویی امروزی ، لامپهای الکترونی جایگزین موج یاب شده‌اند، ولی اساس رله به قوت خود باقی است. لامپ الکترونی اصولا مثل رله کار می‌کند. سیگنالهای ضعیفی که به لامپ داده می‌شوند قدرت و جریان چشمه‌های تغذیه لامپ را کنترل می‌کنند.

به علاوه پوپوف در گیرنده‌اش اساس پسخوراند را که هنوز هم در مهندسی رادیو بکار می‌رود، نشان داد. سیگنال تقویت شده در خروجی گیرنده (مدار زنگ الکتریکی) بطور خودکار بر ورودی گیرنده (مدار موج یاب) اثر می‌کند. پسخوراند در اختراع پوپوف از اساس امر به کلی تازه‌ای است.

پوپوف در بررسیهای بیشتری که همراه با ریبکین آنجام داد به دریافت سیگنالهای صوتی نیز پی برد و معلوم شد که اگر سیگنالها برای بکار انداختن موجیاب خیلی ضعیف باشند، تماسهای ناچیز براده‌ها به صورت آشکارساز عمل می‌کند. و هر سیگنالی با صدایی در تلفن متصل به موج یاب همراه است. این کشف امکان داد تا گستره مخابرات رادیویی وسیع شود.

تکامل رادیو

قدم بعدی که در تکامل رادیویی خیلی سریع پس از اختراع پوپوف برداشته شد و آن بهبود فرستنده‌ها بود فاصله جرقه را از آنتنها حذف کردند و بجای آن مدار نوسانی خاصی قرار دادند که به صورت چشمه نوسانها کار می‌کرد. آنتن متصل به این مدار به صورت تابشگر امواج عمل می‌کند. اختراع لامپهای الکترونی توسط لوی دوفارست (ت1906) دانشمند آمریکایی که راه را برای ایجاد چشمه‌های نوسانهای الکتریکی نامیرا باز کرد، در تکامل رادیو اهمیت فوق العاده‌ای داشت. این اختراع نه فقط سیگنالهای تلگرافی ، بلکه انتقال صوتهای کلامی ، موسیقی و غیره را نیز توسط رادیو میسر ساخت، یعنی مخابرات بی سیم و پخش رادیویی را تحقق بخشید.



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

انحلال پذیری مواد

تاریخ:پنجشنبه 13 مهر 1391-22:18

نگاه اجمالی

میزان انحلال پذیری یک ماده حل شونده در یک حلال به طور قابل توجهی به ماهیت و قدرت نیروهای جاذبه بین ذرات حل شونده - حل شونده ، حلال - حلال و حل شده - حلال بستگی دارد. بیشترین انحلال وقتی مشاهده می‌شود که این نیروها همانند باشند، یعنی نخستین قاعده انحلال پذیری این است که "نظیر در نظیر حل می شود." بطور کلی ، مواد قطبی فقط در حلالهای قطبی و مواد ناقطبی فقط در حلالهای ناقطبی حل می‌شوند. یعنی مواد ناقطبی و مواد قطبی معمولا امتزاج ناپذیرند.

مثلا تتراکلریدکربن (یک ماده ناقطبی) در آب نامحلول است. زیرا نیروی جاذبه به یک مولکول آب نسبت به یک مولکول دیگر قویتیر از نیروی جاذبه بین یک مولکول تتراکلریدکربن و یک مولکول آب است از این رو، مولکولهای تتراکلریدکربن رانده می‌شوند و این دو ماده ، یک سیستم مایع دو لایه‌ای تشکیل می‌دهد.

بلورهای مشبک (مثلا الماس) که در آنها اتمهای تشکیل دهنده بلور با پیوند کووالانسی به یکدیگر پیوسته‌اند، در تمام مایعات نامحلول‌اند. این ساختار بلورین بسیار پایدارتر از آن است که با فرآیند انحلال از هم بگسلد یعنی هیچ جاذبه بالقوه بین حلال - حل شونده نمی‌تواند به قدرت پیوند کووالانسی موجود در این نوع بلور برسد.

فرایند انحلال

میان مولکولهای کووالانسی ناقطبی ، تنها نیروهای بین مولکولی موجود ، نیروی لاندن است. ولی نیروهای جاذبه بین مولکولهای کووالانسی قطبی علاوه بر نیروهای لاندن ، نیروهای دو قطبی - دو قطبی را نیز شامل می‌شود. در مواردی که پیوند هیدروژنی وجود دارد، نیروهای بین مولکولی بطور غیر عادی قوی است. از آنجایی که مواد ناقطبی فقط در حلالهای ناقطبی حل می‌شوند، ید که یک ماده ناقطبی است، در تتراکلریدکربن حل می‌شود.

نیروی جاذبه بین مولکولهای I2 در ید جامد ، تقریبا از همان نوع و اندازه‌ای است که بین مولکولهای CCl4 در تتراکلریدکربن خالص وجود دارد و از این رو، جاذبه ای قابل توجه بین ید و تتراکلرید کربن ممکن می‌گردد و مولکولهای ید می‌توانند با مولکولهای تتراکلریدکربن ممزوج شوند و محلول حاصل یک مخلوط مولکولی بی نظم است. متیل الکل (CH3OH) و آب (هر دو ماده قطبی) به هر نسبت در یکدیگر حل می‌شوند. در محلول متیل الکل و آب ، مولکولهای CH3OH و H2O با پیوند هیدروژنی به هم پیوسته‌اند که در حالت مایع خالص نیز مولکولهای هر دو مایع بوسیله پیوند هیدروژنی به یکدیگر جذب می‌شوند.

مایعات قطبی (بویژه آب) می‌توانند حلال بسیاری از ترکیبات یونی باشند. یونهای مواد حل شده توسط مولکولهای قطبی با نیروی الکتروستاتیکی جذب می‌شوند، یعنی یونهای منفی توسط قطبهای مثبت مولکولهای حلال و یونهای مثبت توسط قطبهای منفی این مولکولها جذب می‌شوند. این جاذبه یون - دو قطبی ممکن است نیروهای نسبتا قوی باشند و موجب می‌شود که یونها از بلور جدا شده و در فاز مایع شناور شوند. یونهای حل شده آبپوشیده‌اند و در حالی که با غلافی از مولکولهای آب احاطه شده‌اند در محلول حرکت می‌کند.

اثر دما بر انحلال پذیری

اثر تغییر دما بر انحلال پذیری یک ماده به جذب شدن یا آزاد شدن گرما به هنگام تهیه محلول سیر شده آن ماده بستگی دارد. با استفاده از اصل لوشاتلیه می توان اثر تغییر دما بر روی انحلال پذیری یک ماده را پیش بینی کرد. اگر فرآیند انحلال ماده حل شونده ، فرآیندی گرماگیر باشد، انحلال پذیری آن ماده با افزایش دما افزایش می‌یابد.


حل شده موجود در محلول سیر شده <----> حل شونده جامد + انرژی



اگر انحلال ماده حل شونده فرآیندی گرماده باشد، با افزایش دما ، انحلال پذیری ماده حل شونده کاهش می‌یابد. معدودی از ترکیبات یونی ( مثل Na2CO3 , Li2CO3 ) بدین گونه عمل می‌کنند. علاوه بر این ، انحلال پذیری تمام گازها با افزایش دما ، کاهش پیدا می‌کند. مثلا با گرم کردن نوشابه‌های گازدار ، گاز دی‌اکسید کربن موجود در آنها از محلول خارج می‌شود. تغییر انحلال پذیری با تغییر دما به مقدار آنتالپی انحلال بستگی دارد. انحلال پذیری موادی که آنتالپی انحلال آنها کم است، با تغییر دما تغییر چندانی نمی‌کند.

اثر فشار بر انحلال پذیری

اثر تغییر فشار بر انحلال پذیری مواد جامد و مایع معمولا کم است ولی انحلال پذیری گازها در یک محلول با افزایش یا کاهش فشاری که به محلول وارد می‌شود، به میزان قابل توجهی تغییر می‌کند. "ویلیام هنری" در سال 1803میلادی کشف کرد که مقدار گازی که در یک دمای ثابت در مقدار معینی از یک مایع حل می‌شود با فشار جزئی آن گاز در بالای محلول نسبت مستقیم دارد. فقط محلولهای رقیق در فشارهای نسبتا پایین از قانون هنری به خوبی پیروی می‌کنند. گازهایی که انحلال پذیری آنها بسیار زیاد است، عموما با حلال خود ترکیب می‌شود (مثلا گاز هیدروژن کلرید وقتی که حل می‌شود، با آن ترکیب شده و هیدروکلریک اسید تولید می‌کند). این محلولها از قانون هنری پیروی نمی‌کنند.

خون غواصها در عمق دریا تحت فشار نسبتا زیاد ویژه عمقی که در آن کار می‌کنند با هوا سیر می‌شود. اگر این فشار ، در اثر بالا آمدن سریع سطح آب به سرعت برداشته شود، هوا به سرعت از محلول خارج شده و حبابهایی را در سیستم جریان خون غواص ایجاد می‌کند. این حالت که "آمبولی هوایی" نام دارد، بر تحریکات عصبی و سیستم جریان خون اثر گذاشته و ممکن است مرگ آور باشد. برای پیشگیری از این حادثه از جو هلیوم و اکسیژن به جای هوا که بخش عمده آن اکسیژن و نیتروژن است استفاده می‌شود، زیرا انحلال پذیری هلیوم در خون و مایعات بدن بسیار کمتر از نیتروژن است.

تعادلهای انحلال

تعادل مایع - مایع (حل شدن برم در آب)

هر گاه 50 گرم برم را که مایعی است قرمز رنگ ، فرار و سمی در ظرف محتوی یک لیتر آب بریزیم، دو لایه قرمز و بی رنگ پدید می‌آید. با گذشت زمان برم در آب حل می‌شود و محلول کم کم پر رنگ می‌شود و بالاخره تغییر متوقف می‌شود. گر چه مایع برم هنوز در ته ظرف وجود دارد (در حدود 14 گرم). در این شرایط که محلول برم در مجاورت برم خالص قرار دارد و هیچگونه تغییری مشهود نیست، می‌گوییم سیستم در حال تعادل است. ویژگی مهم تعادل ، تغییر ناپذیری خواص ماکروسکوپی آن است. خواص ماکروسکوپی ، خواصی است که به مقدار زیادی از ماده وابسته است به اندازه‌ای که قابل مشاهده و اندازه گیری باشد و تغییرات آنها آشکار شود.

تعادل جامد - مایع (حل شدن نمک طعام در آب)

هر گاه مقداری زیادی بلورهای نمک طعام (در حدود 500 گرم) را به یک لیتر آب بیفزاییم و مخلوط را بهم بزنیم چون هم زدن را تا 10 دقیقه ادامه دهیم، خواهیم دید که مقدار زیاد نمک حل می‌شود و فقط 140 گرم آن باقی می‌ماند که با بهم زدن زیاد هم از وزن نمک موجود در ته ظرف کاسته نمی‌شود. بنابراین می‌گوییم که به حالت ثابتی رسیده و سیستم در حال تعادل است، زیرا خواص ماکروسکوپی آن تغییر نمی کند. در حقیقت پدیده تعادل در سیستم جامد - مایع آب نمک شامل دو فرآیند است که در حال رقابت با یکدیگرند.

در ابتدا که نمک را در آب ریختیم، فرآیند حل شدن که شامل یونیزه شدن NaCl به کاتیونهای سدیم و آنیونهای کلر است، اغلب در یک جهت معینی از بلور به سوی محلول انجام می‌گیرد. با پیشرفت فرآیند حل شدن و افزایش غلظت یونها در محلول ، واکنش معکوس نیز امکان پذیر می‌شود. یعنی افزوده شدن یونهای محلول به بلور (تبلور یا رسوب کردن) انجام می‌شود. مادام که موازنه این دو فرایند برقرار است، مقدار نمک حل شده در واحد حجم محلول ثابت خواهد بود و سیستم در تعادل انحلال پذیری باقی خواهد ماند.

تعادل گاز- مایع (حل شدن گاز CO2 در آب)

انحلال گازها در مایعات با دما نسبت عکس و با فشار نسبت مستقیم دارد. مکانیسم حل شدن گاز در مایع ، کم و بیش مشابه حل شدن جامد در مایع و مایع در مایع است. هر گاه بوسیله یک لوله گاز دی‌اکسید کربن را در آب موجود در یک ظرف بدمیم، حبابهای درشت گاز که وارد آب می‌شوند، بتدریج کوچک شده و حتی ممکن است ناپدید شوند و این نشانه حل شدن جزئی آنهاست. با ادامه دمیدن ، به مرحله‌ای می‌رسیم که آب بوسیله گاز سیر می‌شود و دیگر حبابهای گاز بدون کاهش حجم خارج می‌شوند. در این شرایط در دما و فشار هوای اطاق ، غلظت گاز در آب ثابت می‌ماند و به عبارتی تعادل زیر برقرار می‌شود:


(محلول) CO2 <----> (گاز)


نوع مطلب : محلول ها(شیمی) 

داغ کن - کلوب دات کام
لطفا نظر بدهید() 

خوردگی فلزات و ترمودینامیک شیمیایی

تاریخ:پنجشنبه 13 مهر 1391-22:08



تصویر
مکانیسم خوردگی فلزات ‌(آهن)

دید کلی

یکی از مهمترین راههای قطع وابستگی غیر ضروری ، شناخت مشکلات و موانع و راههای تقلیل اثرات سوء آنها می‌باشد. به همین قیاس ، در صنعت و بخصوص صنایع کشور ما ، برای جلوگیری از هدر رفتن منابع مالی و انسانی که یکی از پیامدهای آن ، تقویت هر چه بیشتر بندهای وابستگی می‌باشد، لازم است تا نقاط ضعف صنعت را بخوبی بشناسیم و در آن راستا ، به تقویت هر چه بیشتر توان علمی خود بپردازیم.

خوردگی یکی از موارد معدودی است که اثر خود را نه تنها در مراحل طراحی ، ساخت و تولید و بهره برداری نمایان می‌سازد، بلکه مبالغ عظیمی را نیز در مرحله حفاظت و نگهداری به خود اختصاص می‌دهد.

آسیب‌شناسی صنعت

برای شناخت صحیح‌تر خوردگی و اهمیت آن باید به آسیب‌شناسی صنعت پرداخت، زیرا یکی از مهمترین عواملی که گریبانگیر رشد صنایع و به خصوص صنایع ایرانی می‌باشد، عدم درک عمیق مساله خوردگی است. شاید بتوان دو دلیل عمده برای این بی‌عنایتی برشمرد:


  • در رابطه با ضرر و زیانهای وارد آمده توسط خوردگی به صنایع ، نه تنها آمار مستند بلکه حتی تخمین‌های رسمی مستند و قابل انکار وجود ندارد، لذا مشخص نیست که خوردگی چگونه به آرامی اما بطور مداوم ثروتهای ملی را هدر می‌دهد.

  • ابعاد فاجعه انگیز خوردگی از نظر اتلاف ماده و انرژی و ضرر و زیانهای زیست محیطی روشن نیست. لذا اکثرا با تصور اینکه مسائل مالی مربوط به خوردگی در بررسیهای مالی- اقتصادی در سر فصل استهلاک دیده می‌شوند، از ابعاد واقعی قضیه بی‌خبر می‌مانند و در نتیجه اهمیت مساله همواره در هاله ای از ابهام باقی می‌ماند.

مهندسی خوردگی

در این سلسله مقالات ، خواهیم کوشید جنبه ای از مهندسی را که به آن ««مهندسی خوردگی»» اطلاق می‌شود، به خوانندگان معرفی نماییم. هدف این نوشته‌ها ، ایجاد معلومان نیست، چه ، بسیاری از آنچه را که در اینجا می‌آید، می‌توان در کتب و مقالات تخصصی یافت، بلکه منظور اصلی ، ایجاد شناخت و آگاهی (هر چند جزئی) درباره یکی از مشکلات صنعتی است تا دانش پژوهان در انتخاب رشته‌های تحصیلی با آگاهی و توجه بیشتری اقدام کنند.

خوردگی چیست؟

خوردگی در زبان فارسی ترجمه واژه ای انگلیسی است که معنای آن جویده شده و گاز گرفته شده است. به نظر می‌رسد ظاهر قطعه خورده شده ، این تداعی معنایی را سبب شده باشد. برای بیشتر مردم، خوردگی با مصادیقش شناخته می‌شود، از قبیل زنگ زدگی و سیاه شدن قاشقهای نقره‌ای. در واقع خوردگی همه اینها هست، اما به‌تنهایی هیچ یک نیست. بطور مثال ، زنگ زدگی فقط به خوردگی آلیاژهای آهن اطلاق می‌شود.

استاندارد ایزو 8044 ، خوردگی را بدین شکل تعریف می‌کند:


««واکنش فیزیکی – شیمیایی متقابل بین فلز و محیط اطرافش که معمولا دارای طبیعت الکتروشیمیایی است و نتیجه‌اش تغییر در خواص فلز می‌باشد. این تغییرات خواص ممکن است منجر به از دست رفتن عملکرد فلز ، محیط یا دستگاهی شود که این دو ، قسمتی از آن را تشکیل می‌دهند. »»

تصویر

ترمودینامیک و خوردگی

ترمودینامیک یکی از رشته های فیزیکی – شیمی، است. یکی از ویژگی‌های علم ترمودینامیک این است که می‌تواند پیش‌بینی کند که آیا واکنشهای خاصی رخ خواهند داد یا نه. تعیین زمانی واکنشی که ترمودینامیک ، انجام آن را پیش بینی می‌کند، موضوع علم سینتیک است. خوردگی را می‌توان میل ترمودینامیکی برای بازگشت به اصل خود فلز دانست و آن را چنین توضیح داد:

فلزات اکثرا به شکل
ترکیبات شیمیایی در سنگهای معدنی موجود هستند. فلز در این حالت به خاطر وضعیت ترمودینامیکی خود ، حالت پایدار دارد، یعنی از نظر ترمودینامیکی اگر نیرویی از خارج بر سنگ معدن وارد نشود، فلز میل دارد که در سنگ بماند و حالت ترکیبی خود را حفظ نماید. وقتی سنگ معدن از معدن جدا می‌شود، طی فرآیندهای خاصی ، فلز از سنگ استخراج می‌شود و به حالت فلز خالص در می آید.

عمل استخراج فلز ، از نظر شیمیایی یک فرآیند الکترون گیری یا
احیا به حساب می‌آید. به این ترتیب فلز موجود در سنگ معدن ، الکترون می‌گیرد و به حالت فلز خالص در می‌آید. اما در اینجا وضعیتی ناگوار وجود دارد: الکترونهایی که طی فرآیند استخراج گرفته شده‌اند، برای فلز به شکل مهمان ناخوانده در می‌آیند. فلز علاوه بر الکترونهایی که خود دارد، الکترونهای زیادتری را نیز طی استخراج به سوی خود فرا خوانده ، با مهمان کردن الکترونهای اضافی از چنگ سنگ گریخته است. اما این مهمانان تبدیل به ناخواستگانی شده‌اند که فلز دائما در جستجوی راهی برای بیرون راندن آنهاست. به زبان ترمودینامیکی ، بی‌قراری فلز را ناپایداری ترمودینامیکی می‌نامند.

هنگامی که فلز موفق به از دست دادن الکترون می‌شود، واکنش
اکسیداسیون رخ می‌دهد و می‌گویند خوردگی اتفاق افتاده است. وقتی فلز خورده شد، آنچه از واکنش باقی می‌ماند (اصطلاحا محصولات خوردگی) به لحاظ ترمودینامیکی پایدار خواهد بود و از این نظر مانند فلز در حالت معدنی (در حالتی که به شکل ترکیب در سنگ معدن وجود داشت) رفتار می‌کند.

جالب آنکه از نظر شیمیایی نیز محصولات خوردگی مثل سولفات آهن ، اکسید روی و غیره ، همان ترکیباتی هستند که در سنگ معدن فلز یافت می‌شود.

خوردگی ، یک واکنش طبیعی

از آنچه گفته شد، می‌توان نتیجه گرفت که خوردگی یک واکنش طبیعی است و انجام می‌شود. اما چنانکه خواهیم دید، خوردگی دارای زیانهای بسیاری است که ما را وادار می‌کند تا ترجیح دهیم این واکنش انجام نشود. انجام نشدن خوردگی مثل آن است که بخواهیم آبشاری به جای آنکه از بالای صخره به پایین بریزد، از پایین به بالا بریزد. اگر چه امکان ندارد که ریزش آبشار را وارونه کنیم، اما خواهیم دید که روشهایی وجود دارند که با استفاده از آنها می‌توان نه تنها خوردگی را مهار کرد، بلکه آن را برعکس نمود!



داغ کن - کلوب دات کام
لطفا نظر بدهید() 

متانول

تاریخ:چهارشنبه 12 مهر 1391-17:24

ریشه لغوی

واژه متیل الکل ریشه یونانی دارد. Methuبه معنی شراب و hyel به معنی چوب است. متیل در سال 1840 از کلمه متیلن مشتق شد و برای نامیدن متیل الکل استفاده شد. درسال 1892 از طرف انجمن بین المللی نامگذاری ترکیبات شیمیایی ، متیل الکل به متانول تغییر نام یافت.

تصویر
مولکول متانول

نگاه کلی

متانول به نام متیل الکل و الکل چوب هم شناخته می‌شود. متانول یک ترکیب شیمیایی با فرمول CH3OH بوده و ساده‌ترین نوع الکل است. متانول مایعی سبک ، فرار ، بدون رنگ و قابل اشتعال است. در اثر سوختن در هوا دی‌اکسید کربن و آب تولید می‌کند. متانول با شعله‌ای تقریبا بی‌رنگ می‌سوزد. این ترکیب از متابولیسم غیر هوازی گونه‌های زیادی از باکتریها تولید می‌شود. در نتیجه مقدار اندکی از بخار متانول در جو وجود دارد.

متانول موجود در اتمسفر بعد از گذشت چند روز توسط
اکسیژن و نور خورشید به CO2 اکسید می‌شود.

تاریخچه

در فرآیند مومیایی کردن در مصر باستان ، از ماده‌ای استفاده می‌شد که حاوی متانول بود و از تجزیه حرارتی چوب بدست می‌آمد. متانول خالص اولین بار در سال 1661 توسط رابرت بویل از چوب استخراج شد. در سال 1834 شیمیدانهای فرانسوی انجمن Jean-Babtist ، ترکیب عناصر آن را بدست آوردند و همچنین کلمه متیلن را به شیمی آلی معرفی کردند.

در سال 1923 شیمیدان آلمانی ، "ماتیاس" پیر ، متانول را از گاز سنتز (مخلوطی از CO و H2 که از
کک بدست می‌آید) تولید کرد. در این فرآیند ، از کرومات روی به عنوان کاتالیزور استفاده می‌شد و واکنش در شرایط سختی مانند فشار 1000-300 اتمسفر و دمای حدود 400 درجه سانتی‌گراد انجام می‌گرفت. در شیوه مدرن تولید متانول ، از کاتالیزورهایی استفاده می‌شود که در فشارهای پائین عمل می‌کنند و کارایی موثرتری دارند.

تولید

امروزه گاز سنتز مورد نظر برای تولید متانول مانند گذشته از زغال بدست نمی‌آید، بلکه از واکنش متان موجود در گازهای طبیعی تحت فشار ملایم 10-20 اتمسفر و دمای 850 درجه سانتی‌گراد با بخار آب و در مجاورت کاتالیزور نیکل تولید می‌شود. CO و H2 تولید شده ، تحت تاثیر کاتالیزوری که مخلوطی از مس و اکسید روی و آلومینیوم است، واکنش داده و متانول ایجاد می‌کنند. این کاتالیزور اولین بار درسال 1966 توسط ICI استفاده شد. این واکنش در فشار 50-100 اتمسفر و دمای 250 درجه سانتی‌گراد صورت می‌گیرد.

روش دیگر تولید متانول ، واکنش دی‌اکسیدکربن با
هیدروژن اضافی است که تولید متانول و آب می‌کند.

کاربرد

متانول به صورت محدود به عنوان سوخت در موتورهایی با سیستم احتراق داخلی استفاده می‌شود. متانول تولید شده از چوب و سایر ترکیبات آلی را متانول آلی یا بیو الکل می‌نامند که یک منبع تجدید شدنی برای سوخت است و می‌تواند جایگزین مشتقات نفت خام شود. با این همه ، از بیو الکل 100 درصد نمی‌توان در ماشینهای دیزلی بدون ایجاد تغییر در موتور ماشین استفاده کرد. متانول به عنوان حلال ، ضدیخ و در تهیه سایر ترکیبات شیمیایی استفاده می‌شود.

40 درصد از متانول تولیدی برای تهیه
فرمالدئید استفاده می‌شود که آن هم در تهیه پلاستیک ، تخته سه لایی ، رنگ و مواد منفجره استفاده می‌شود. برای تغییر ماهیت اتانول صنعتی و جلوگیری از کاربرد آن به عنوان نوشیدنی ، مقداری متانول به آن اضافه می‌کنند. دی متیل اتر از مشتقات متانول است که به جای CFC ها در افشانه‌های آتروسل به عنوان پیشرانه استفاده می‌شود.

نکات ایمنی

متانول ترکیبی سمی است. محصول متابولیت آن ، اسید فرمیک و فرمالدئید ، سبب نابینایی و مرگ می‌شود. متانول از طریق نوشیده شدن ، تنفس و جذب از راه پوست وارد بدن می‌شود. بطور مداوم در معرض آن بودن و استفاده از آن بدون محافظ (ماسک و دستکش) خطرناک است. در صورت نوشیدن آن بلافاصله باید با پزشک تماس گرفته شود. اثرات سمی متانول چند ساعت بعد از مصرف شروع می‌شود.

بنابراین استفاده سریع از پاد زهر مناسب می‌تواند از بروز آسیبهای دائمی جلوگیری کند. دوز کشنده متانول ، 100-125 میلی لیتر است. یکی از پاد زهرهای متانول ، استفاده از تزریق اتانول می‌باشد که به آهستگی آن را در
کبد تجزیه می‌کند، بطوریکه این مواد ، متابولیزه شده نمی‌توانند دوباره ترکیب شوند. نشانه‌های نوشیدن متانول شامل سردرد ، سرگیجه ، تهوع ، عدم تعادل ، پریشانی ، خواب آلودگی و سرانجام بیهوشی و مرگ است.

تصویر
مولکولهای متانول

خواص فیزیکی

نام متانول
نامهای دیگر الکل چوب ، متیل الکل
فرمول شیمیایی CH3OH
وزن مولکولی 32.04gr/miL
نقطه جوش 64.7 درجه سانتی‌گراد
نقطه انجماد 97.8- درجه سانتی‌گراد
چگالی 0.78gr/cm3 در 25 درجه سانتی‌گراد




داغ کن - کلوب دات کام
لطفا نظر بدهید() 

فلزات قلیایی

تاریخ:چهارشنبه 12 مهر 1391-17:11


نام عنصر نشانه اتمی آرایش الکترونی عدداتمی جرم اتمی نقطه ذوب چگالی شعاع اتمی شعاع یونی رنگ شعله
لیتیم Li 3 6.94 453.7 0.534 0.152 0.068 قرمز
سدیم Na 11 22.99 371 0.971 0.185 0.098 زرد
پتاسیم k 19 39.10 336.8 0.862 0.227 0.133 بنفش
اوبیدیم Rb 37 85.47 312.2 1.532 0.247 0.148 قرمز
سزیم CS 55 132.91 301.6 1.873 0.265 0.167 آبی
فرانسیم Fr

نگاه کلی

عناصر گروه اول جدول تناوبی که به فلزات قلیایی معروفند، در لایه ظرفیت الکترونی دارای آرایش هستند که n ، شماره دوره آنها است. آخرین عنصر به نام فرانسیم ، رادیواکتیو است که در اینجا مورد بحث قرار نمی‌گیرد. این عناصر ، فلزات نقره‌فام رنگی هستند. آنها بسیار نرم بوده و به آسانی با چاقو بریده می‌شوند. سطح درخشان آنها در معرض هوا به علت اکسیداسیون کدر می‌شود.

این عناصر بشدت واکنش‌ پذیر هستند. واکنش ‌پذیری آنها از بالا به پایین گروه یعنی از Li به Cs افزایش می‌یابد و از این لحاظ شبیه عناصر سایر گروهها هستند.

img/daneshnameh_up/3/31/lxzp.gif

منابع فلزات قلیایی

این فلزات بدلیل واکنش‌پذیری زیاد بطور آزاد در طبیعت یافت نمی‌شوند و معمولا بصورت ترکیب با سایر عناصر هستند. منبع اصلی سدیم ، هالیت یا Nacl است که بصورت محلول در آب دریا یا بصورت رسوب در بستر دریا یافت می‌شود. پتاسیم بصورت فراوان در اکثر معادن بصورت کانی سیلویت (Kcl) یافت می‌شود و همچنین از آب دریا هم استخراج می‌گردد.

فلزات قلیایی بسیار واکنش‌پذیر هستند و آنها را نمی‌توان با جانشین کردن سایر فلزات بصورت آزاد تهیه کرد. فلزات قلیایی بصورت فلز آزاد را می‌توان از الکترولیز نمکهای مذاب آنها تهیه کرد.

خواص فیزیکی

فلزات قلیایی از چند جهت با بقیه فلزات تفاوت دارند. آنها نرم بوده و دارای نقطه ذوب و نقطه جوش پایین هستند. دانسیته پایینی دارند، بطوریکه دانسیته K و Na و Li از دانسیته آب پایین‌تر است. آنتالپی استاندارد ذوب و تبخیر کمتری دارند. به علت داشتن فقط یک الکترون در لایه ظرفیت معمولا پیوندهای فلزی ضعیفی ایجاد می‌کنند. این فلزات وقتی در معرض شعله قرار می‌گیرند، رنگ آن را تغییر می‌دهند. وقتی عنصری در مقابل شعله قرار می‌گیرد، حرارت شعله انرژی کافی برای برانگیختن الکترون لایه ظرفیت را به لایه‌های بالاتر فراهم می‌کند.

الکترون در بازگشت به حالت پایه
انرژی منتشر می‌کند و این انرژی دارای طول موج منطقه مرئی است که باعث می‌شود رنگ ایجاد شده در شعله دیده شود. شعاع یونی در فلزات قلیایی خاکی در مقایسه با شعاع اتمی آنها خیلی کوچکتر است. چون اتم یک الکترون در لایه S خود دارد که عدد کوانتومی آن با عدد کوانتومی لایه داخلی متفاوت است. بنابراین این لایه نسبتا دور از هسته است.

وقتی اتم این الکترون را از دست داده و به
یون تبدیل می‌شود، الکترونهای باقیمانده در تراز نزدیک نسبت به هسته قرار دارند. بعلاوه افزایش بار مؤثر هسته آنها را بیشتر بطرف هسته جذب می‌کند. بنابراین اندازه یون کاهش می‌یابد.

خواص شیمیایی

فلزات قلیایی عامل کاهنده قوی هستند. پتانسیل الکترود منفی آنها نشانگر میل شدید آنها برای از دست دادن الکترون در تبدیل به کاتیون در محلول است. آنها می‌توانند اکسیژن ، کلر ، آمونیاک و هیدروژن را احیا کنند. در اثر واکنش با اکسیژن هوا اکسید شده و تیره می‌شوند. بنابراین در زیر نفت نگهداری می‌شوند. بعلت واکنش با آب و تولید هیدروژن و هیدروکسید قلیایی نمی‌توان آنها را زیر آب نگهداری کرد.

img/daneshnameh_up/8/84/Potasium99NP.jpg

واکنش با آب

از بالا به پایین ، به شدت واکنش با آب افزوده می‌شود. لیتیم به آرامی با آب واکنش داده و حبابهای هیدروژن آزاد می‌کند. سدیم بشدت و همراه با مشتعل شدن با آب واکنش نشان داده و با شعله نارنجی می‌سوزد. پتاسیم در اثر برخورد با آب به شدت مشتعل شده و با شعله بنفش می‌سوزد. سزیم در آب ته‌ نشین شده و به سرعت تولید هیدروژن می‌کند. آزاد کردن هیدروژن همراه با ایجاد امواج ضربه‌ای شدید است که می‌تواند باعث شکستن محفظه شیشه‌ای شود.

Na در
آمونیاک حل شده و ایجاد محلول آبی تیره می‌کند که بعنوان عامل کاهنده در واکنشها استفاده می‌شود. در غلظتهای بالا رنگ محلول برنزی شده و جریان الکتریکی را همانند فلز هدایت می‌کند.

چند مورد غیر عادی در شیمی Li دیده می‌شود. کوچک بودن اندازه کاتیون Li در نشان دادن خاصیت
کووالانسی در برخی ترکیبات و ایجاد پیوند دیاگونالی با منیزیم از آن جمله است.

اکسیدها

فلزات قلیایی در اثر واکنش با اکسیژن هوا ترکیب جامد یونی به فرمول تولید می‌کنند. هر چند که Na غیر از این ، ترکیب پروکسید ( ) بعنوان فراورده عمده و پتاسیم هم سوپر اکسید ( ) را بطور عمده تولید می‌کند.

هیدروکسیدها

هیدروکسید فلزات قلیایی ، جامدات یونی به فرم کریستالی در رنگ سفید و فرمول MOH است. قابل حل در آب هستند و همه بجز LiOH آبدار می‌شوند. محلول آبی آنها باز قوی‌ است. اسیدها را خنثی کرده و نمک تولید می‌کنند.

هالیدها

هالیدهای این فلزات ، همه جامد یونی به فرم کریستالی و به رنگ سفید بوده و قابل حل در آب هستند، جز LiF که بعلت داشتن انرژی شبکه بالا که ناشی از جاذبه الکتروستاتیکی بین یون کوچک +Li و -F است.

حالت اکسایش

این فلزات حالت اکسایش 0 و 1+ دارند. تمام ترکیبات شناخته شده آنها بر پایه +M است. اولین انرژی یونش آنها پایین است، زیرا الکترون آخرین لایه به خوبی الکترونهای لایه داخلی توسط جاذبه هسته محافظت نمی‌شود، بنابراین آسان تر برداشته می‌شود. انرژی دومین یونش بالا است، زیرا الکترون بعدی از لایه کامل برداشته می‌شود. همچنین بوسیله هسته ، بخوبی‌ جذب می‌شود.

انرژی یونیزاسیون از بالا به پایین با افزایش عدد اتمی و افزایش تعداد لایه‌ها بعلت دور شدن الکترون ظرفیت از هسته کاهش می‌یابد.

اطلاعات صنعتی

هیدروکسید ، کلرید و کربنات سدیم ، از جمله ترکیبات شیمیایی مهم صنعتی هستند. هیدروکسید سدیم از الکترولیز آب شور اشباع شده در پیل با کاتد فولادی و آند تیتانیوم تولید می‌شود. کربنات سدیم با فرآیند سالوی تهیه می‌شود. در این فرآیند کلرید سدیم قابل حل در آب به بی‌کربنات سدیم نامحلول تبدیل شده و بعد از صاف کردن و حرارت دادن به کربنات سدیم تبدیل می‌شود.

به هر حال محصول اصلی در این فرآیند کلرید کلسیم است و فرآیند رسوبگیری و حرارت و تهیه کربنات سدیم به کارخانه بستگی دارد. فرایند سالوی رفته رفته جای خود را به تهیه کربنات سدیم از
جداسازی و تلخیص کربنات سدیم موجود به معادن می‌دهد.



داغ کن - کلوب دات کام
لطفا نظر بدهید() 


  • تعداد صفحات :33
  • ...  
  • 7  
  • 8  
  • 9  
  • 10  
  • 11  
  • 12  
  • 13  
  • ...  
شبکه اجتماعی فارسی کلوب | Buy Website Traffic | Buy Targeted Website Traffic